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I. INTRODUCTION

This Final Report covers the period from August 1993 to December 1996.

During this time three Master's degrees were awarded to the students who

were supported by the NASA Grant. A fourth student who was supported

partially by this Grant will be submitting his Master's Thesis by April 1997.

A visiting Professor from China was awarded a Post Doctoral Fellowship

under this Grant for two years. One of the Master's degree holders has

completed all course requirements for his Ph.D. and is working toward his

Dissertation. This dissertation is expected to be submitted to the Graduate

School at Howard University by March 1998. This student was also given

financial help under this Grant.

Five papers were sent for publication. One of these was published in the

IEEE - MTT's Proceedings and three were published in the International

Journal of Electronics. The fitth one was sent to reviewers for evaluation.

The lists of Master's Theses, their headings and their Abstracts are given in

the following pages. Also are given the lists of Publications and their copies.





II. List of Master's Theses

1. "Coupling single-mode fiber to uniform an dtapered thin-film Waveguide"

Gadi Jagannath, December 1994

o "A weakly guiding approximation for the propagation characteristic of single

and double-clad optical fibers".

Trevor Correia, August 1994.

3. "Rectangular patch microstrip antenna - analysis and design"

James Wesley Hall, July 1994.

A fourth Master's Thesis will be submitted in April 1997

A Ph.D. Dissertation will be submitted in March 1998.





III. Headings and copies of abstracts of the Master's theses.





HOWARD UNIVERSITY

Coupling Single-mode Fiber to Uniform
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A Thesis Submitted to the Faculty of the

Graduate School of Arts and Sciences

of

HOWARD UNIVERSITY

in partial fulfillment of the requirement for the degree of

Master of Engineering

by

Jagannath V. Gadi

Washington, D.C.
December, 1994.



ABSTRACT

Theoretical derivations, computer analysis and test data are provided to demonstrate

that the cavity model is a feasible one to analyze thin-substrate, rectangular-patch microstrip

antennas. Seven separate antennas were tested.

Most of the antennas were designed to resonate at L-band frequencies (1-2 GHz).

One antenna was designed to resonate at an S-band (2-4 GHz) frequency of 2.025 GHz.

All dielectric substrates were made of Duroid, and were of varying thicknesses and relative

dielectric constant values.

Theoretical derivations to calculate radiated free space electromagnetic fields and

antenna input impedance were performed.

generate Smith Chart input impedance plots,

MATHEMATICA 2.2 software was used to

normalized relative power radiation plots and

to perform other numerical manipulations. Network Analyzer tests were used to verify the

data from the computer programming (such as input impedance and VSWR). Finally, tests

were performed in an anechoic chamber to measure receive-mode polar power patterns in the

E and H planes.

Agreement between computer analysis and test data is presented. The antenna with

the thickest substrate (er = 2.33 , 62 mils thick) showed the worst match to theoretical

impedance data. This is anticipated due to the fact that the cavity model generally loses

accuracy when the dielectric substrate thickness exceeds 5% of the antenna's free space

wavelength [ 1, 2,3] . A method of reducing computer execution time for impedance

calculations is also presented.
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ABSTRACT

Recent advances in optical fiber technology have made it possible to develop optical

communication systems with very large bandwidths and very low loss. Optical systems are

routinely tested and installed with repeaterless spacings of several hundred kilometers, a fact

that attests to the very low loss inherent to the transmission media. Although there is a

manufacturing capability for producing high performance optical fibers, there is no concise

method of accurately predicting their propagation characteristics. For the simplest form of

fiber, the standard single-clad step-index profile, relatively simple analytical procedures give

accurate results. However, for the high performance modified structures, exact analytical

solutions do not exist so their analysis relies on approximate solutions. Because of the rigors

associated with accurately analyzing optical fibers with modified characteristics, new

mathematical procedures are constantly being developed to simplify the analysis, and, when

all else fails, the procedures turn to empirical methods.

In this Thesis, an approximation method, known as the weakly guiding approximation,

is utilized to find the propagation characteristics of single and double-clad optical fibers.

Using a combination of numerical and graphical solutions, data are provided to compare the

results fi'om this method with those achieved by other methods. It is shown here that, without

the complexities associated with other procedures, this method gives fairly accurate results.
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ABSTRACT

Theoreticalderivations, computer analysis and test data are provided to demonstrate

that the cavity model is a feasible one to analyze thin-substrate, rectangular-patch microstrip

antennas. Seven separate antennas were tested.

Most of the antennas were designed to resonate at L-band frequencies (1-2 GHz).

One antenna was designed to resonate at an S-band (2-4 GHz) frequency of 2.025 GHz.

All dielectric substrates were made of Duroid, and were of varying thicknesses and relative

dielectric constant values.

Theoretical derivations to calculate radiated free space electromagnetic fields and

antenna input impedance were performed.

generate Smith Chart input impedance plots,

MATHEMATICA 2.2 software was used to

normalized relative power radiation plots and

to perform other numerical manipulations. Network Analyzer tests were used to verify the

data fi'om the computer programming (such as input impedance and VSWR). Finally, tests

were performed in an anechoic chamber to measure receive-mode polar power patterns in the

E and H planes.

Agreement between computer analysis and test data is presented. The antenna with

the thickest substrate (er = 2.33 , 62 mils thick) showed the worst match to theoretical

impedance data. This is anticipated due to the fact that the cavity model generally loses

accuracy when the dielectric substrate thickness exceeds 5% of the antenna's free space

wavelength [ 1, 2,3] . A method of reducing computer execution time for impedance

calculations is also presented.
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COUPLING SINGLE-MODE FIBER TO UNIFORM AND SYMMETRICALLY

TAPERED THIN-FILM WAVEGUIDE STRUCTURES USING GADOLINIUM
GALLIUM GARNET

Jagannath Gadi, Raj Yalamanchili and Mohammad Shahid
Howard University

Department of Electrical Engineering
2300, 6th Street, N.W

Washington, DC 20059

Abstract

The need for high efficiency, components has grow_ significantly due to the expanding role of fiber optic

communications for various applications. Integrated optics is in a state of metamorphosis and there are man)'

problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of

coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a

single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel

tapered structure presented in this paper is shown to produce perfect match for power transfer.

1. INTRODUCTION

Integrated Optics has come a long way since early 1970"s. It ispoised at the threshold of making a big

impact in everyday world. Integrated optics has drawn into several disciplines, such as computers and

microwave integrated circuit technology resulting in new fabrication technologies. The field is now in a state of

flux and there are still many problems awaiting solutions. One of the main problems being the lack of a simple

and efficient method of coupling optical fiber to thin-film devices for integrated optics. Although a number of

connectors are available in the market, the efficiency, and reproducibility, are low. In this paper, a novel uniform

and symmetrically tapered structure are analyzed mathematically and the results presented.

There are certain papers published by researchers in the area of thin-film couplers that are worthy of note. in that

the_ provide the background for the development of the proposed work and point towards issues raised by

shortcomings of the previous work. Louisell [1] investigated broadband hi-directional couplers in which he showed

that the phase constants and coupling coefficients vary. with distance along two coupled transmission lines.

Ulrich [2] has shown tryanalysis how light can be coupled into a thin-film by means of a prism-film coupler. Akira

Ihaya [3l presented a mathematical model of a thin-film optical directional coupler consisting of a three-layered

deposited glass films on the substrate, with coupling occurring between the first and the third film. Wilson and

Teh[4] have shown a mathematical modeling of a tapered velocity, directional coupler. Nelson [5] has theoretically

0.7803-2674-1/95/$4.00 @ 1995 IEEE. 926 SBMO/IEE.E MTT-S IMOC'95 Proceedings



examinedthecouplingof single-modeopticalwaveguidesthroughthe use of expanding and contracting tapers

Jmchi Noda et al.[6] have shown a connection between single mode fiber coupler to a Ti diffused LiNo3 strip

waveguide. The authors Y.Cai et al.[7]., have analyzed the coupling characteristics of a uniform structure.

2. THEORETICAL BACKGROUND

In this paper, we present a novel method of coupling light from a single mode fiber t6two structures : Uniform

and symmetrically tapered thin-film couplers. The model presented is an improved version of the uniform five

layered structure presented by Y. Cai et al [7]. Ifa fiber is directly connected to the thin-film, as shown by Y.Cai et

al [7].. it leads to a large mismatch of the field profiles at the interface and as a result, leads to loss of optical

power. To overcome this optical reflection and radiation losses, they proposed a five layered structure which is

shown in Figure 1. This consists of a coupling waveguide, buffer layers, thin-film layer and the substrate. To avoid

rmsmatch of the fiber core and the coupling waveguide field profiles at the interface, the coupling wavegmdc

dimensions are designed as 2aX2& where "a" is the radius of the fiber core. Gunmann et al[S]., have shown that

the field distributions of the fundamental mode of the cylindrical fiber core and the garnet material waveguide

differ slightly if the refractive index differences are smaller. Solgel solution is used at the interface such that any

slight refractive index mismatch between the fiber core and the coupling waveguide is minimized. The buffer layer

serves the purpose of coupling optical power to the thin-film wavegmde of lower refractive index. Gadolinium

Gallium Garnet material was used as the thin-film material because of the properties exhibited by the material.

The buffer layers and the coupling waveguide are silica doped materials. The required refractive index of buffer

and coupling waveguides is obtained by.doping TiO2 with SiO.,.

The eigen mode equations of the five layered structure developed ( Figure 1 ) can be obtained by solving with

w=g=2a, where w= the height of the coupling waveguide, a= radius of the fiber core. l_=refractive index of the

coupling waveguide ( Garnet material ), n,--refractive index of the belier layer, n,, ---refractive index of the thin-

film material. ),--wavelength of the wave ( 1.3ttm ) and WI= height of the thin-film coupling waveguide. The

eigenmode equations developed by Y.Cai et al[91..are •

Q° = tan(K,..W/2) -- ( ! )

Q =_[(2x/_,)2fn__n])_K_ --(2)

Q= K_'{-1+_ tan'(g'Kzy)+l} -- (31

tan(gK )

Q,- -,:)- K; (4)
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The parameters k_. Q, and k_, Q_ are the x and y components of the wavenumbers. K_ and Ksy represent the

sinusoidal variation in the x and y direcUons. The propagauon constant of the coupling wavegmde can be

deternuned by solving equations ( 1 to 4 ).

, 2 2 .... (5)
fl;,= a,:Uo

The propagationconstant[3v,,ofthethin-filmwaveguideisobtmnedby'replacingn_ withn,,,w wlthW Iand

_ with _w in equations(Ito5). The valueofWI forthethin-filmisso chosensuchthathighestpower

couplingoccursbetweenthecouplingwavegmde and thethin-filmatthisvalue.The optimum valueW Iischosen

such that [3**= [3w for no mismatch. The thickness of the buffer layer has a direct bearing on the power coupled

from the coupling waveguide to the thin-film waveguide and an optimum value is chosen such that there is a

maximum power transfer from the coupling waveguide to the thin-film waveguide. The propagation constant of

the thin-film vanes because of the change in value of w along the z direction. Therefore the mismatch. M depends

on the propagation constant difference given by M(Z) = _g - _w(g) "-- ( 6 )
" 2C

and the maximum fraction of power transferred between the coupling waveguide and the thin-film waveguide with

a fixed mismatch M, is given by F: = ( ! + M: ) _ _ ( 7 )

Application of the theory developed by Snyder et all 10] and Snyder [11], to the model analyzed in Figure 1, gives

the power coupled into the thin-film for a uniform coupler as

P' =PF:Sin: i(C/F)_
(8)

o

where P is the total power introduced. C the coupling coefficient between the center of the coupling waveguide

and the center of the thin-film waveguide. In this paper, we present a novel uniform and symmetrically tapered

structure ( Figure 2 ) where the modes of a uniform waveguide form a complete set and can propagate

independently from one another, while the tapered modes are coupled together and adjust their characteristics to

suit the varying transverse properties of the guiding structure as they are moving along the taper. During the

process of coupling the light from the uniform coupling waveguide to the thin-film waveguide, the wave is kept in

the lowest order mode. For the shape shown in this paper.( Winn and Harris [12]).the power coupled at the

narrow end is given by Po -- P" ( 1- F: Sin : i (C / F)d: ) _ ( 9 )
o

In this paper while analyzing the theoretical model of the uniform and tapered coupler we made the assumption

that the materials used are iossless and therefore there are no Fresnel's reflections at the interfaces and that there

are no Iossess at the interface of the fiber core and the coupling waveguide.

928



3. RESULTS AND DISCUSSION

The material used for the analysis of uniform and tapered couplers is Gadolinium Gallium Garnet (GGG). The

coupling waveguide material used is GGG. Buffer layer material is spun silica which is doped with TiO2. Thin-

film material is polymenzed solgei solution of SiO: and TiO:. The refractive index of coupling waveguide, n_ =

1.9389 _! X = 1.3gin. The refracuve index of the buffer layers is chosen, as n, = 1.9340 and the refractive index

of the thin-film material, n_ = 1.9450. Figure 3 shows the plot of C versus d, where C is the coupling coefficient

and d is the distance from the center of the coupling waveguide to the center of the thin-film This equation given

bySnyder [111. is

c= __"2 - ,o,

The refractive index of GGG versus wavelength is shown in Figure 4. The expression used to calculate the

6P,;:/ -- (ll 

where A, and L,arethesellmeiercoefficients.given_' Wood and Nassau [13].

By solvingtheequations(11o5)withw=2a--g, thepr_gation constant_mt= 9.3253804 lain"Iwas obtained.

Figure5 shows thepropagationconstantforthe thin-filmasa functionofthefilmthicknessW I. The propagation

constant of the thin-film equals the propagation constant of the coupling waveguide when the tlUckness

Wl=O.g86_an. The maximum coupling power is attained at j3at = [3w = 9.3253804 gm "1 . Figure 6 shows the

plot of coupled power versus the propagation distance for the uniform coupler of different d's for perfectly

matching constants [3m = [3w at thickness of thin-film w=0.886 p.m. Figure 7 shows the power coupled for

uniform and tapered couplers with respect to the distance z and the taper starts at length LI= "]00gm. with

slopes (K) of the symmetrical taper at 0.0001.0.00009 and 0.00002. Figure 8 shows the effect of the thickness of

the thin-film and the role played by the taper in the power output.

4. CONCLUSION

The novel structure (Figure 2) exhibits broad-bandwidth coupling characteristics and it is easy to manufacture

since it does not put serious constraints on the accuracy of the coupling length of the coupler. The taper has the

distinctive advantage of confining the power within the taper such that the output stays approximately near the

value of the power introduced at the start of the taper. The outstanding feature of the taper is the higher efficiency

as compared to the more conventional devices.

929
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Rectangular waveguides with two conventional and two

superconducting walls

RAJ YALAMANCHILI?, ZHENG AN QUI? and
YEN-CHU WANG?

The propagation properties of TE_' modes and their dispersion relations in
rectangular waveguides with two conventional and two superconducting walls,
derived by using the Meissner boundary conditions on the superconducting walls,
are presented. In addition to recovering some previously known results, some
novel results have been obtained: the cut-off wavelength of the dominant TE t°
mode is greater than that of the conventional TEto mode, and the tangential
electric field and normal magnetic field for the dominant mode TE t° exist on the
superconducting surfaces. Expressions for electromagnetic components, surface
currents, attenuation coe_cient, maximum transmitted power, dispersion and
wave impedance are also presented.

I "

1. Introduction

Over several years there has been considerable progress in the development of
superconducting devices in the microwave and millimetre wave bands, for example.
low- and high-temperature superconducting microwave filters, resonators, antennas,
phase shifters, etc. Many superconducting electronic devices have been sought at
liquid nitrogen temperatures (Nisenoff 1988, Van Duzer and Tuner 1981). The
discovery of high-T, superconductors (HTS) has fundamentally changed the pro-
spects of superconductive electronics. The low surface resistance of superconducting
materials makes possible microwave devices and circuits with very high Q, low insert
loss and dispersion. Superconducting waveguides have been studied as low T*
superconductors (< 18K) (Alaux and Wybouw 1976, Rohner 1978, Zepp et ai. 1977.
Fabre et al. 1981). Experimental and theoretical results have shown that HTS
waveguides and transmission lines exhibit significantly better performance than that
of their identical metallic counterparts (Wang et at. 1994, Yalamanchili et al. 1992).

The propagation properties of transverse electric (TE) modes in high-T*
(T, > 30 K) superconductor rectangular waveguides have recently been studied using
HTS electromagnetic theory and Meissner boundary conditions which are consistent
with the two-fluid model (Wang et ai. 1994). The new boundary conditions give rise
to different field solutions, hence new waveguide characteristics. This paper describes
the propagation properties of TE modes in rectangular waveguides with two
conventional and two superconducting walls (WGCSW) based on the theory
established by Wang et al. (1994). This kind of waveguide has different character-
istics from either HTS waveguides or conventional waveguides. The attenuation and

dispersion are smaller than that of conventional waveguides. The dominant mode in
the WGCSW is the TE _° mode, which is the same as conventional waveguides. An

interesting property is that the cut-off wavelength of the dominant mode is greater

Received 18 June 1994;accepted 27 October 1994.
t Department of Electrical Engineering, Howard University, Washington, DC 20059,

U.S.A.

0020--7217/95 SI0.00 C 1995 Taylor & Francis Ltd.



2 R. Yalamanchili et al.

than that of conventional waveguides. Therefore, it is easier to excite the dominant

mode in the WGCSW. Since the WGCSW has two conventional broad walls and

two superconducting walls (two simply-connected superconductors), it is easier to
fabricate than a four-wall superconducting waveguide.

In section 2, the most important dispersion relation of WGCSW is derived along
the x-direction from the wave equation and the Meissner boundary conditions on

two walls (x=0, x=a). Expressions for electromagnetic field components and
surface currents, including the surface superconducting current J= and the surface

normal current J,,, based on two-fluid theory are given. Various parameters of the

WGCSW are analysed and compared with conventional waveguides.

2. Theory

2. I. Wave equation and numerical solutions of cut-off wavelength

This section analyses a WGCSW with two narrow superconducting walls (x=0
and x = a) and two broad perfect or good conductor walls 0' = 0 and y = b), as shown
in Fig. l. A rigorous formulation based on Maxwell'g equations and Meissner

boundary conditions is used to obtain the new electromagnetic field properties in the
WGCSW.

The governing wave equation (Helmholtz equation) and the Meissner boundary
conditions for the longitudinal magnetic field H. of the TE mode in an air-filled
WGCSW are:

V_H:+k2=H= =0 (])

OH: I

On ,i.LH.=0 atx=0,_: a (2a)

dH.

_-:n" = 0 aty=O,y=b (2b)

where the operator V_. is the Laplacian operator in the transverse plane (i.e.
xy-plane). Propagation in the -'-direction is assumed. The parameters a and b are the

Figure I.

b

a x

WGCSW with two narrow superconducting walls (x=0, x=a) and two broad
perfect or good conductor walls (y= 0..v= b).



Rectangularwaveguideswithtwosuperconductingwalls 3

width and height of the WGCSW, respectively, k c is the cut-off wavenumber, and ';-e
is London penetration depth is for HTS this value varies from 10-sin to 10-Tin

(Burns 1992). Equation (2a) is the Meissner boundary condition; (2b) is the
boundary condition for the conventional wall. The important Meissner effect is that

the fields do not vanish abruptly from the surface of a bulk superconductor, rather,
they decay exponentially into the bulk. The penetration depth )'L is the characteristic
decay length of the magnetic field into a superconductor. It is obvious that when

ib--* o0, the second term of the Meissner boundary condition approaches zero, (2 a)

reduces to the boundary condition (°H,/On)= 0 for the conventional waveguide.

Therefore, the first term of (2 a) is related to the properties of the WGCSW. Thus,

the Meissner boundary conditions are relevant to the two-fluid superconductingmodel.

It is assumed that the general solution of the governing equation is

H,=(C t sin k_x+C2 sin k_c) cos k,.v (3)

where C a and Cz are unknown coefficients; both cannot be equal to zero at the same

time; kx and kr are the uknown wavenumbers along the x and y axes, respectively.

Substituting (3) into (2 a) and (2 b) obtains two sets of equations for k x and kr:

(kz sin k_ cos k_'_ C1-(kx cos' sin k_\
-2L / _c_a+---_L ) C2=0 (4b)

!

,;.-_Ct - kxC, = 0 (4 b)

and

m/I

k,=--_-, re=O, 1,2,3 .... (5)

For non-trivial solution conditions, the determinant of the coefficient matrix of (4 a)
and (4 b) has to be equal to zero:

1
_ k_

A2

cos kza sin k_,a
k_ sin k_,a k, cos kxa

)'t )'L

=0 (6)

Therefore, the one important dispersion relation in the transcendental equation is
obtained from the above determinant as

2).Lk =

tan k,.a = (kfi.L), I (7)

The non-integer roots of this equation describe the dispersion relations along the
x-axis as a function of London penetration depth and the dimensions of the

WGCSW. A graphical method is used for the solution, as shown in Fig. 2, from
which the cut-off features are obtained.
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Figure 2.
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_0

Graphical method of solving (7) to obtain the cut-of
first root).

kas

2X_k,

(k,_) z-1

features (p= i is the

J

I

Substituting (4a) into (3),

H:=Cx (cos kxX + k_ sin k_r) cos k_ (8)

or

H: = C2(k, ALcos k__¢+ sin k_x) cos k_ (9)

It is obvious from (9) that kz#0, otherwise the solution becomes trivial. It is worth

noting that owing to the non-integral nature, the mode indexes are determined by
solving (7), which is derived from the Meissner boundary conditions on the two
walls.

To avoid risk of confusion with the commonly used TE,,,,, the superscripts pm
(the index p is related to the superconducting walls) are used to designate the modes

in the WGCSW. In this case, the dominant mode is designated TE to (p= I does not
mean integer index along the x-axis, instead it is the first root of (7)). The above

formula, however, does cover conventional waveguides in which H. _: cos k_.¢ cos k D,
when 2t.---, oo, as is evident from (8). There are no TE °'' modes in'the WGCSW, in
which property it is quite different from conventional waveguides.

Substituting (3) into (1),

kc2_ 2 2-k_, + k_,

Therefore, the cut-off wavelength 2, is obtained as

(10)

2_

_°= k-_ (ll)

The numerical results of cut-off wavelengths for some TEe'' modes are listed in the

Table. These results demonstrate that the cut-off wavelength of the dominant mode

in the WGCSW (;._°_4.06m m for a=2mm) is greater than that of TE_o in a
conventional waveguide with the same dimensions by a factor of !'013, and the
bandwidth is greater than an octave.

° . • . .



Rectangular waveguides with two superconducting walls

2.2. Field components and surface current distributions

Field component expressions for the TE mode can be determined from the axial

magnetic field H. by means of the relations between the transverse and axial

components as follows.

From (9), let Bo=k_L and Ho=C2 for simplicity. Then the axial magnetic field
component H. becomes

H= 2_Ho(B ° cos k..x + sin k_:) cos kyy (12)

where Ho is an unknown coefficient depending on excitations, Bo is a proportion-
ality parameter which varies for different modes and penetration depths. The wave

factor in the form of exp(jcot-Tz) is assumed. The real part "_of the propagation
constant -/is the attenuation constant, the imaginary part 3 is the phase constant and

co is the angular frequency. Other field components can be expressed as

j/_k,

H, =--_- Ho(B o sin k..x-cos k_.x) cos krv (13a)

j//k,
H, =T2 Ho(Bo cos k,.x + sin k__x) sin kyy

k:
(13b)

E jco/_ok_ Ho(B ° cos k_.¢ + sin k__¢) sin kyy (13c)

E,--JcoP°k_2 Ho(Bo sin k_x-cos k_Jc) cos k O,
k,

(13d)

where /_o is the permeability of the material, assumed to be that of free space.
The wave impedance Zh of the WGCSW is defined as

Ex E___y= o_/ao (14)Zh--n- =-nx

Cut-off wavelength (mm)

Modes a= ! a=2 a=4 a=8

TE _° 2.05 (2.0)** 4.06 (4.0) 8.07 (8.0) 16.09 (16.0)
TE 2° !-02 (I-0) 2-04 (2.0) 4.07 (4.0) 8-04 (8.0)
TE tt 0-90 (0.89) 1.79 (I.78) 3-58 (3-58) 7.16 (7.15)
TE zt 0-70 (0.70) 1.42 (1.41) 2.83 (2-82) 5.66 (5.65)
TE 3° 0.67 (0.48) 1-34(0.97) 2.67 (1.94) 5-34 (3-88)
TE 3_ 0.56 (0.44) 1-11 (0.89) 2.22 (1.79) 4.44 (3.58)

*For :-t.= 10-Srn there is little difference in values.
**Values in parentheses are the corresponding cut-off wavelengths for the first six TE,.. modes in

conventional waveguides.

Cut-off wavelengths for some TE p" modes (2t= 10 -_ m, a=2b)*.

/

I"
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The instantaneous field expressions for the dominant TE 1° mode in the WGCSW
can be obtained as:

H.. = Ho(B o cos k_v + sin k_.x) cos (cot- flz)

,=_-z Ho(Bo sin k__v-cos k_.v) sin (cot-l_z)

(15a)

(15b)

r-a/_ok_

Ey =_ Ho(- Bo sin k_x + cos k_) sin (cot- flz) (15c)

where, [3=2n/2, is the phase constant of the TE 1° mode, and 2, is the waveguide
wavelength of the TE *° mode. There are three field components in the WGCSW, as

in conventional waveguides. Note that the superscript '10' for the dominant mode is
omitted from here on unless otherwise stated.

From the above discussion, (15 c) demonstrates clearly that, due to Bo being very

small, the space distribution of the electric field Ey of the TE *° mode is proportional,
significantly, to cosk_._ along the x-direction. This means that tangential electric
fields exist on the superconducting surfaces (x = 0 and x = a) of the WGCSW. This

novel property is completely different from that of a perfectly conducting conven-

tional waveguide since, for H:#:0 and for a finite surface impedance at microwave

and millimetre wavelengths, the tangential components of E on the superconducting
walls are finite. The space distribution along the y-direction is the same as for

conventional waveguides. For details of the field distributions see Fig. 3.

Equation (15 b) demonstrates that the space distribution of the magnetic field Hx

is largely proportional to cos k__r, which means that normal magnetic fields exist on
the surfaces (x=0 and x=a) (see Fig. 3). The above results demonstrate that the

magnetic field lines are not continuous in the WGCSW (Orlando and Delin 1991),

which is in agreement with the Meissner effect, but the magnetic flux density B is

continuous in and out of the WGCSW walls because B=#o(H+M) (M is the
magnetization density in the walls and is not equal to zero). This also is a new

property in the WGCSW, which does not exist in conventional waveguides.

Figure 3.

(a) (b)

(a) Distribution of the electric field Ey; (b) distribution of the magnetic field Hx.
For the TE 1° mode.

//
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Rectangular waveguides with two superconducting walls

London's equations and the two-fluid model are used to investigate the current
distribution on the surfaces (x=0 and x=a). The total conduction current density

consists of the superconducting current density J, and the normal electron density 1,
based on the two-fluid model. This model assumes that the conducting electrons in

the WGCSW wails are divided into two categories. We use a different method to

describe their distribution. The surface superconducting current ./',, due to super-
electrons is calculated based on the London relation and appropriate boundary

condition first. Then the normal surface current J,, due to normal electrons and the
losses is calculated using the approximate resistive boundary condition and the

perturbation approach.
_._ superconducting current J, in two isolated walls in which each wall is

considered as a simply-connected superconductor using a thin-film substrate is given
as

1

J,=--_ A (16)

This is London's relation, where A =#o2_, and A (in Tm) is the vector potential in

the WGCSW. Let the vector potential inside the air-filled hollow region in the

waveguide be A, (subscript a indicates the air-filled WGCSW). This satisfies the

following equations:

V+A,=B (17)

/ i
.,,,..J'

\

,!

0

1
i

k"A, + VV" A,E= (18)
J_oCo

where _o is the permittivity of the material.
Thus, the London relation guarantees that the vector potential is a 'real field'

that is completely specified. Equation (18) is called Lorentz's gauge, which gives rise
to the relation between the electric field E and the vector potential A. in the air

region.
Before solving the current distribution problem, it is important to determine the

boundary condition at a boundary between the two media (here, the superconduct-
ing medium and air for walls x=0 and x=a; the perfect conductor and air for walls

y = 0 and y = b). The boundary condition on the tangential components of fields (J,

and A..) for the simply-conneccted superconductor is

I

J.,=--_ A., (19)

where the subscript 'at' denotes the component tangential to the boundary in the air

or the applied field region; 'st' denotes the component of supercurrent density
tangential to the boundary in the HTS. Note that J,, is the bulk current. Once A, is

known, the current density/,, and the surface supercurrent density J,,, are readily

calculated. The solution satisfying (17) and (18) is obtained from B as follows:
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A,_.=Ao(B o sin k:,x + cos k_x) sin k,y (20 a)

jAok_,
A&x _ ---- Ho(Bo cos k,,.x-sin k_x) sin kyy

Iz°k_ Ho(B o cos k___c+ sin kxx) sin kyy (20 b)

Aay = (B o sin kr_c + cos k_x) cos kyy

+/aokx
Ho(B o sin kxx-cos k_x) cos ky), (20 c)

The surface supercurrent distributions on the isolated walls (x=0 and x=a) are
obtained from (19) as follows:

(x = 0 plane)

Js,t --'--J_,_a7 + J,,:a:

.._.L F/aokx Ho cos kyy- cos k_ y---A-- sin k, va. (21 a)~x Lkl .-

,,..

t_

(x=a plane)

Jsst = Jsjra_ + Jssza:

A -ocos P'-T a,+ _ sink,)'a:
(21 b)

where J,_, and J,.. are the surface supercurrent magnitudes on the walls along the y-

and :-directions, respectively. Consider, here, that the superconducting current

decays exponentially in the walls, so the current is mainly carried by the supercon-

ductor surface adjacent to the air in the WGCSW. It is easy to see the, the surface

supercurrent and bulk current are very large because the amplitude of J,,t is
proportional to I/At. (A =/_o,;-_). which is of the order of l0 T.

All high-T_ materials are type II superconductors. In the Meissner phase, it is

assumed that the critical field Hcl _7.7 to 385Am -t (depending on temperature)
for a HTS sample of YBa,Cu30_ (88.2 K, H_ axis) (Wu and Sridhar 1990), so if

Ho_ 13 to 660Am -_, then the theoretical values of supercurrent density are
estimated to be about 10_8 Acm -2 which is in excellent agreement with other data

(Burns 1992, Heinen et al. 1991, Miranda et al. 1991, Levenson et al. 1991). The
distributions of surface supercurrent and normal current on the x=0 and x=a

• ,/



Rectangular waveguides with two superconducting walls 9

planes of the WGCSW are shown in Fig. 4. (Note that the distributions of the real

and imaginary parts of the surface supercurrent of the WGCSW are the same.)

The surface normal current distribution at its boundaries can be obtained using
the approximate resistive boundary condition n × H=J,. (Senior 1975) as given by

(on the y = 0 plane)

J,. = J,.,,ax + J,._a:

= Ho(B o cos kxx + sin k,,.,c)a: -J_c _ Ho(Bo sin k_¢- cos k_;c)a= (22 a)

(on the y = b plane)

J,. = J,._ax + J._a.

= - H 0 cos kyb(B o cos k_c + sin k_)ax

+j_k_

Ho cos kyb(B o sin k..x- cos k_x)a= (22 b)k¢

(on the x=O plane)

j/_k,
J,. = J,.yay + J,,,,a, = HoB o cos k_a_,- _ HoB O sin kyya:

(on the x = a plane)

J,. = J.,_yay + J.nza=

= - Ho(Bo cos k_a + sin k_a) cos k_ay

j#k,
_.2 Ho(Bo cos k_-sin k,,a) sin kTya:ko

(22 c)

(22d)

where J,., and J,.= are the surface normal current magnitudes on the walls along the
y- and z-directions, respectively. It is easy to see that the distributions of the surface

normal currents on the walls x=0 and x=a are the same as those of the surface

supercurrents on the walls, which is the result of the two-fluid model. But the

distributions of current on the y=0 and y=a surfaces differ from conventional

waveguides due to different electromagnetic field distributions. The losses of the
WGCSW come from the surface normal current flowing through the small surface

Jssl or lO'lJs,_

JssV Or lO?Juq,

(a)
Figure 4.

Jist or lOr_'w,t _/_/

a,w or lorj.,//_J

(b)

Distribution of surface supercurrent and surface normal current for the TE l°
mode on the walls (a) x=0, (b) x=a.
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impedance. It is predictable that the losses are small because B o is very small. The
distributions of surface current on the WGCSW planes y=0 and y=b are shown in

Fig. 5.

2.3. Attenuation coefficient

The attenuation caused by two superconducting walls and two conventional
walls can be calculated by the perturbation technique as given approximately by

_to ._ 3-07 x 10- _ dB kin- t (23)

where f_ is the cut-off frequency of the TE 1° mode, R, and R, are the surface

resistances of HTS and metal walls, respectively, and 21. is in millimetres. Note that
the attenuation is not only proportional to f_ because R, ocf 2 (Romanofsky and

Bhasin 1992), but also proportional to _._ (R,_:f_12). The curve of attenuation

coefficient • versus frequency f is shown in Fig. 6 in which R,.._5.0× 10-28f2_'1.

R,_2.6x 10-_ft/2_l (Cu), and a=2b--2mm. As far as the attenuation is con-

cerned, it is greater than that of high-To superconducting waveguides, but smaller

than that of conventional waveguides.
Losses in the WGCSW are generated from three sources: superconductor loss,

metal loss and dielectric loss. A typical superconducting waveguide used in micro-
wave and millimetre-wave circuits uses low-loss dielectrics or free space, so the

dominant loss mechanisms are the superconductor loss and metal loss.

The superconductor loss is caused by the current of normal electrons in the

superconducting walls based on the two-fluid model theory. The paired supercon-

ducting electrons are dissipationless because they cannot be scattered without
breaking pairs. The microwave surface resistance of superconducting films has been
found to be as low as a few microohms. These surface resistance values are lower

than those for copper at the same temperature by a factor of several tens. Such a

surface resistance gives a small power loss. If the penetration depth ;.L = 3"6 x 10-7 m

for the case of conduction along the c-axis and the surface resistance is equal to
10.3 mr2 (60 K) at 14-567 GHz (How et al. 1992), the attenuation coefficient is found

to be about 0-9dBm -1 for R,._30mfL The metal loss is the same as for

conventional waveguides.

Figure 5.

S

(a) (6)

Distribution of surface current for the TE _° mode on the walls (a) y = O. (b) y= b.
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f
• _ a-m£n:Lmul at f-l.65fc for WGCSW

Q

wccsw
q

.2--

o /
1.2 1.4 1. 1.8 2

Frequency (f/f=)

Figure 6. Attenuation due to wall losses versus frequency (_.,.= 10- 7m). CWG, conventional
waveguide; WGCSW, waveguide with two conventional and two superconductingwalls.

2.4. Phase velocity, group velocity and phase dispersion

Superconductors have a frequency-independent penetration depth in the tera-

hertz range, which determines field penetration into the material, rather than a

frequency-dependent skin depth as for normal conductors. This means that super-
conductors introduce practically no dispersion into a microwave circuit. Dispersion
in the WGCSW, if any, is due to the frequency dependence of the attenuation caused

by the two broad walls. Dispersion caused by the frequency dependence of the phase

velocity is almost the same as for conventional waveguides. The phase velocity vp
and the group velocity v, of the TE 1° mode can be shown to be given by

CO ¢

Vp # !- (24)

dCO c/i -t y)
where c is the speed of light in free space.

Our work shows that the phase velocity (group velocity) of the WGCSW for the
dominant TE *o mode is smaller (greater) (by about 1.4%) than that of conventional

waveguides with the same dimensions and frequency because f, is smaller than that

for conventional waveguides. Therefore, the dispersion produced for the same

geometry is small. In summary, the signal distortion due to dispersion in the
WGCSW is reduced dramatically by two superconducting walls.

il
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2.5. Maximum transmitted power (dominant mode)

The maximum transmitted power in the WGCSW is given by

P,,,_ = _--_oIE,,, I I I - (-_)2] llz (26)

where qo is the intrinsic impedance of the medium inside the waveguide, and the
mangitude of the electric field intensity IEm,,I is given from (15c) as

IE .I= IH0l e°_°
kc (27)

In the Meissner phase, the maximum electric field intensity and power in the
WGCSW are smaller than that of conventional waveguides (29 kV cm-t and I1 kW)
because Ho is very small. For example, they are about 60Vcm -: and 26mW for

Hot _.77mAcm -I, and 3kVcm -t, 64W for H,I _,3-85 A cm -_, respectively. It is
clear from (26) and (27) that the transmitted power and maximum electric field are

dependent on the London penetration depth (k, oc 1/,;.0. The larger the London

penetration depth, the larger is the transmitted power and maximum electric field. It

should be noted that the penetration depth also increases with temperature, which

means that more power is carried by the WGCSW.

3. Conclusions

A theoretical analysis for a waveguide with two conventional and two supercon-
ducting walls has been presented. It is based on high-T, superconducting electro-

magnetic theory and Meissner boundary conditions. The important implications of
this paper are:

(a) the bandwidth of the WGCSW is greater than that of conventional metallic

waveguides with the same dimensions;

(b) the tangential electric field and normal magnetic field of the TE t° mode are
finite on the inner surfaces of the walls (x=0 and x=a), which is in

agreement with Wang et al. (1994);

(c) the magnetic field lines are not continuous in the WGCSW, which is the
result of Meissner effect;

(d) the surface supercurrents are very large and the surface normal currents are

very small, so the attenuation coefficient of the WGCSW is smaller than that

of conventional waveguides by about 102 to 105 times for different surface

resistance and penetration depthmthe main loss mechanism is metal loss due
to the two broad walls;

(e) in the Meissner phase, the maximum electric field intensity and transmitted

power are smaller than those of conventional waveguides because the critical
field H,_ is very small:

(f) dispersion is small compared with conventional waveguides;

(g) the wave impedance Z_ of the WGCSW has the same expression as for

conventional waveguides.
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Scattering by the transition junction bet_een a conventional and a

high-temperature superconducting waveguide

RAJ. YALA MANCHILI+- ZHENG AN QIU+

and _ EN-CHU WANG+

TEl0 mode scattering during the transitLon from a con_enuonal to a superconduct-
m_ rectam, ular v,aveeuide is in,.esugated based on the Me_ssner model. The

reflection coefficient, input impedance and equivalent inductance are calculated in
cm-,.,,a'.e bands then the TEto mode is incident on the d sconttnmt.', from the

conventional (or non-superconducting) ,,a,,eguide.

1. Introduction

Recently there has been considerable progress in the development of supercon-

ductine devices in ',he micro_ave and millimetre-v,ave band. for example. Io_- Jnd

high-temperature superconducting microwave filters, resonators, antennas, phase

shifters etc. The transmission properties of high-T¢ superconductor wa,,eguidc

(HTSWG) have been studied recently (Wang er al. 1994). In that paper, the

propagating TE modes in HTSWG are obtained based on Meissner boundar._

condition {i.e. gH:/cn-H:7'-L=O on the walls, where H.. is the axial component of

ma_,netic field, ,;.i, is the London penetration depth).

-Since a HTSWG must be connected to its external world, it is important to

investigate the EM transition from a conventional waveguide (C_'G) to HTSWG.

The physical configuration of the problem under study is shown in Fig. I. It is

assumed that the incident wave is the dominant mode. namely. TEto mode.

CWG

incident wave TE ,. mode

Y

z.l
L

reflected wave TE,o mode

cut-off m_des A

HTSWG

transmitted wave TE" mode

/

cut-off modes

)Z

0

Wave scattering from a rectangular CWG and HTSWG junction at :=0.
Figure 1.
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travelling from the CWG {z <0) to its HTSWG transition interface (at z=0), in the

positive z-direction with exp (jc_t) time dependence. Although the dimensions of the

CWG and HTSWG are the same. the higher-orders mode TEP'qp> I,q> I) (Wang
et al. 1994) are excited near the transition interface in the HTSWG section (z>0)

because of the different waveguides. The CWG dominant mode TEto is reflected and

the higher modes TE,,,, (m¢l.n#O) are excited in the CWG as a result of the
different characteristic impedances of the dominant modes in the HTSWG and

CWG. Analysis of HTSWG is given briefly in _2. In _ 3. we consider the reflection

coefficient, characteristic impedance and equivalent inductance due to the HTSWG
transition when one, two, three or four modes exist in the HTSWG.

2. Analysis of high-T¢ SC waveguides

A theoretical analysis for HTSWG has been presented by Wang et al. (1994)

in details based on HTSC electromagnetic theory and the Meissner boundary

condition. It can be shown that the field component expressions for the dominant
mode TE '_ in HTSWG are given as follows:

H. = Ho(B o cos kxx+ sin kxx)(C o cos k,.y+ sin k_y) (I)

h J,qG

x= _:_- Ho(Bo sin kxx-cos k,_r)(C o cos kry+ sin kyy)
(2)

I-1 jflky
y=_-- Ho(B o cos k__v + sin k__'c)(C o sin k_y-cos kyy)

(3)

E -Jrnll°-k-_ Ho(B o cos k_v + sin k,x)(C o sin kyy-cos kyv)
_- k_

(4)

E jOgpok x

y=--_ Ho(B o sin krv+cos k_-'c)(C o cos k_,y+ sin kyy)
(s)

where /_o is the permeability of the material which is assumed to be that of free

space; H o is an unknown coefficient depending on excitations; Bo=k_2L and

C o = ky2 L are proportionality parameters, but they are different for different modes
and penetration depth. The wave factor in the form of exp (jot - 7z) is assumed; k, is

the cut-off wavenumber, the real part _t of the propagation constant 7 is the

attenuation constant, the imaginary part fl=2n/2g is the phase constant, 2g is the

waveguide wave length and to is the angular frequency; k_ and ky are the
wavenumbers of the TE it mode along the x and y axes, respectively. Note that the

superscripts I I for the dominant mode in the HTSWG have been suppressed in these

and following expressions for convenience, unless stated otherwise. It is worth

noting that when considering the HTSWG, because the non-integer mode indexes

are determined by solving two transcendental equations of dispersion relations

(Wang et al. 1994) which are derived from the Meissner boundary condition on the

four walls, in order to avoid any risk of confusion with the commonly used TE,,,, we

use superscripts to designate the modes in HTSWG, i.e. TE pq. Here the pair _ bears



]i -z,
[{'_IUCUN!t_t' _qIHC [!II_? _C'l["CrI?_'tl

no relationshipto the wavenumbers. We choose p= I,q= I for the dominant mode

onb for convenience.
"The wave impedance Z p_ of the TE pq mode in the HTSWG is defined as

ZP_=H,=-H_ 3 p_

_ he re

13_= -'_ =lk_-[Ikf_t: -.-_ky"_:]!: :
• pq

l h

3. Reflection coefficient and characteristic impedance

For con,,enience, the transition interface is assumed to be located at :=If

Conditions are imposed such that all the v.aveguide modes except the TEI,_ mode

(z <0) and TE _1 mode (z >0) are belo,* cut-off b.', suitabl', choosing some operating

frequency. The cut-off modes required for matchine the boundary conditions a_ - = _
are TE,,, modes in the CVqG. An incident TE:, _a_e of unl t ampl_vadc :-
considered. Its reflected wave has amplitude F and all the higher-order modes arc ,,c:

up by the transition interface. A transmitted wave TE _ of unknown amplitude a::

is set-up by the interface in the HTSWG on the right-hand side, Therefore, based on
the mode-matching technique, the boundary conditions to be satisfied at the

junction or transition interface are as follows: the tengential electric field E,. and

magnetic field H_ must be both continuous, i.e.

asin,, z _ _ m_ m,'z n=- -x+ a,..sin-- xcos-h- v
(1 +F) rt a 1 .=o a "

k{q aP_(-Bo sin k{" x+cos k_ q x)[C_ _ cos k_ q v+sin k_ q v) {Sl

_ ,,+ ,2.,.sin-- cosT
a =l n=0

.p_ _ k_y + sin k_q') (9)flWk_ a_(B_ _ sin k_x -cos k_ x)(Co cos
- (kp)_

where Z' means that when m= 1 and n=O. the unknown coefficient a,..=O or

a,o =0. a and b are the waveguide width and height, respectively. Subscripts l0 and
mn denote the quantities of CWG and superscripts '_ refer to quantities of HTSWG.

Using the well-known orthogonality property of the wave functions for the
CWG. by multiplying the CWG wave functions and integrating on both sides of

each of the two equations we obtain from eqns (8) and (9)

ho(i +F)+h(mn)a,..= _ _ a"F(mn" pq) (10)
p=l _=I

aPtl

ho(F-l)+h(rnn) _ _ :-_ F(mn, pq)
"_tO -'ran p=l _=t "

(Ill
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For the HTSWG, when using a similar orthogonality property (see the Appendix

for the proof), one can obtain from eqns 18) and (9) bv multiplying the HTSWG

wave functions and integrating on both sides of each of the two equations

go(pq)¢l + I-)+ f _ a,..,q(mn, pq)=aPqflpq) (12)
m=l n=O

go(pq)(F-I)+ _. _5' a,.. apq .z.. z.. ---. ,q(mn. pq)= - _-p_)(pq) (13)
--10 m=l n=O -ran

where Zlo is the wave impedance of dominant mode TE_o. z,.. and a,,,. are the wave

impedances and amplitudes of higher-order modes in the CWG: z pq and apq are the

wave impedance and amplitude of mode TE pq in the HTSWG. respectively, Other

quantities are known and given below

ah
ho =q- (14J

nbm
h(rnn) = - , (15)

4k7,..

rnr, k_.q
F(mn. pq)-

t + ( - k_qa - cos -11)"(Bg q sin k_"a)

](7;a - (k_q) 2

f l +(-- l)"(Cg q sin k_qb-cos k_qb) l(7) ,,6,

go(Pq) = a

I + cos k_qa-B_ q sin k"_a

2 I EI-c°sk_qb+Cgqsink_ qb](an_) _ (k_q) z _--_p,/ (17)

g(mn, pq)= __
mnk_ q F 1 + cos k_a-Bg q sin k_a

L (7):a - (kfq) 2

-cos +Cg, k;'b]

I k_qb sin

(18)

abk_

f(Pq)- (4k f"): (19)

In order to solve (10)-(13) for input impedance and reflection coefficient, etc., we

use the iteration method according to the order of one, two, three or four modes in
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the HTSWG. Here. only the expressions of one mode are gp.en at the transition

interface _-=0 tsee Fig. 1). The input impedance is

_11

Z_. =-- (20)
glO

and the reflection coefficient is

_11 _Z,o 12ll
I- -- _It _1.. _

- ' - I 0

where Z I1 is the wa',e impedance of the dominant mode TE _ in the HTS_,_,G. The

magnitude and argument of the complex reflection coefficient I-, _ith incidence from

the_CWG, are plotted in Fig. 2 as functions of frequent) _hen one. tv, o. three or

tour modes are considered. All magnitude and argument cur,,es _ho,a similar

behaviour. Note that the reflection coe(ficient magnitude F approaches unit',' v, hen

the frequenc', approaches the cut-off frequent',. Abo,,e the cut-off frequenc_ a

decreasin_valueofFimpliesa real powerflo_ into the HTSWG As more modes in

the HTS_,'G are considered, IF, and ±F converge to the dashed curxe_. Since the

characteristic impedances in the two different waveguides are quite different, this

1,0

,9-

.8

Iri

.7

.6-

.5-

x one mode

• two modes

• three modes

T four modes

./F

i0 o

_ R--_ 41__ I 0 °

1.92 1.94 1.96 1.98 2.00

fl_o

Figure 2. Magnitude and argument of reflection coefficient 1- as a function of frequency.
, ,_ ._ iO-'m,f_o=6.55GHz, f"= 12.6GHz. BW=6.05GHz.)(a= .b= .-.9 cm. ).L = 3"6 x
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type of variation of F is similar to that described by Safaui-Naina and Macphire
(1982). In Fig. 3, Z,, is plotted against the frequency. It should be noted that Z,, and

V are both real quantities when only one mode is considered in the HTSWG.

Similarly, the dashed cur',es are the results when sufficient modes in the HTSWG are

considered. It is estimated that 20 modes in the HTSWG will gi,,e exact results.

As shown in Fig. 4. the equivalent inductance decreases writh frequency. This is

due to the superconducting nature of the HTSWG and is independent of the

dimension-variation type of discontinuities.
In conclusion, it is found that the transition from a conventional to supercon-

duc:ing wa,,reguide gi',es rise to large reflection ( _0.9 near/_,_ and decreasing almost
linearly with frequency). It is suggested that transformers or other devices for

matching are required.

Appendix

Proof of orthogonality of the HISWG _ave /'unctions _

Let u and v (u:_r) be arbitrary eigenfunctions in the HTSWG obeying the

Helmholtzequation and the Meissner boundar? condition_ We obtain

Figure 3.

Rmxl 0 1

Zo

1.0--

0.8--

0.4-

0.2-

Q_, X one mode
%

\ • two modes

\ • three modes

• four modes

1.92 1.94 1.96 1.98 2.00

f/f|o

1.2

i.i

r

I 1.0 Xm
Z0

-- 0.9

-- 0.8

-- 0.7

Input impedance Z,.=Ri.+jX_. as function of frequency. (a=2b=2-29cm,
2L= 3-6 x 10- _ m. ft o ----6"5 GHz, f" = 12"6GHz, BW = 6"05 GHz.)
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L(.n)

?
i

6.0

L
5.0 i

!

i

4.0

2.0

• two modes

• three modes

• four _odes

Figure 4.

1,O "-_

[

0 t ' • f'f;O

1.92 1.94 1.96 1.98 2.0

Input inductance as function o( lrequcnc} _a=2h=229cm. /,.t.=30 , 10 n',.

fto=O.55GHz, f"=12-OGHz. BLV=6.05GHz.)

Vru+k}u=O (A 1)

-----u=0 atx=0, x=a:y=0, v=b IA2)
_n ;-L

V_ t'+k_ t'=0 (A3)

_v 1 v=0 atx=O,x=a:y=O,v=b (A4)

_n iL

then

, v_-_--u-_)+(,-k_) uvdxdy=O (AS)

By using Green's theorem, it follows that

fi f_ [v(V_r+k_)u_u(Vr +k_)v] dx dv=O (A6)

From the Meissner boundary condition, we obtain the following relation:

t L-K) dl+(k'-k_) ut'dxdy=O (AT)0

that is



I IS_) _tLwcquide�unction scatterinq

, c:j?k{- _) m" d.r d'c=0

Generail_ speaking, k¢ _ k.,, and we obviously have

f, _ fburdxdr=O_ _o

hence the modal v, ave functions for the HTSVCG are orthogonal.

¢A8)

(A9)
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Meissner model of superconducting rectangular waveguides

YEN-CHU WANG÷, ZHENG AN QIU+ and
RAJ YALAMANCHILIt"

The propagation properties of the TE p'_mode and their dispersion relations m a
high temperature superconductor (HTS) rectangular waveguide using the .Meissner
boundary conditions on all four superconducting walls are presented. In addition
to recovering some previously known results, we have obtained some unique and
novel results: the dominant mode for HTSWG is the TE _t mode (instead of the

conventional TEIo model and the tangential etectrtc field and normal magnetic
field for the dominant mode TE _1 exist on the surfaces. The expressions for
electromagnetic components, surface current, attenuation coefficient, the maxi-
mum transmitted power, dispersion and wave impedance are also presented. The
attenuation is found to be much smaller than that of the conventional v,a,,egmdes
and the dispersion is negligible. The Meissner model presented here has been
proved to be valid and powerful for analysis of superconducting _a,,eguides. For
the first time, we have shown that the Meissner boundary condition is a key
element in boundary value problems ['or superconductor electromagnetics.

I. Introduction

Since the advent of high temperature superconductors (HTS), many supercon-
ducting electronic devices have been sought at liquid nitrogen temperatures (Nis-

enoff 1985, Van Duzer and Turner 1981). Incorporating HTS materials in guided

wave systems at microwave and millimetre wavebands is very promising for high

speed digital (Hilbert et al. 1989), high frequency analogue (Hammond et al. 1990"L

waveguide and transmission line applications in microwave and millimetre-wave
devices and circuits (Richard et al. 1992, Winters and Rose 1991, Pond and Krowne

1988). Some novel applications of HTSC transmission lines and devices have been

given by Yalamanchili et al. (1992) and Heinen et al. (1991).

The advantages of using HTS at high frequencies include: firstly, very small

losses, which means low-attenuation and low-noise: secondly, very small dispersion

up to frequencies of several tens of GHz (Kown et al. 1987); thirdly, smaller device
dimension; and finally the propagation delay time can be greatly reduced because of

the smaller size and the shorter interconnects (EI-Ghazaly et al. 1992).

Experimental and theoretical results have shown that HTS waveguides
(HTSWG) and transmission lines exhibit significantly better performance than their

identical metallic counterparts. This is because metal transmission systems have
ohmic losses at microwave and millimetre-wave bands at which the conventional

waveguides (CWG) have extremely high signal attenuation (10"*dBkm -L at

200GHz (Microwave System Design's Handbook 1987)), and therefore are not

practical for transmission except over very short distances. The attenuation problem

can be virtually eliminated through the use of HTSWG and superconducting
transmission lines.
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+Department of Electrical Engineenng, Howard University. Washington. DC 20059,

US.A.
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The superconducting waveguides ha',e been studied pre_iously for low T_

superconductors I < 18 kt _Alaux and W,vbouw 1976. Rohner 1978. Zepp et al. 1977,
Fabre et al. 1981). The modelling of the propagation process in HTS transmission

lines has been dealt with b_ man',' authors, using both the t_,o-fluid model and the

Matns Bardeentheor.', (D_kaaretal. 1988. Leeetal. 1988. Lametal. 1992. Lee and
Barfknecht 1992). High-T_ (T_>30K) superconductors have different properties

from Iow-T_ superconductors. This paper describes the propagation properties of
trans',er_e electric tTE) modes in HTSWG based on HTS electromagnetic theory
and the Mei_sner boundar.', condition consistent with the two-fluid model. We v, ill

describe a direct approach for obtaining the general electromagnetic field component

expressions, surface current distribution, maximum transmitted power, critical
current and electrical field for breakdown, attenuation coefficient, dispersion proper-

ties. and _ave impedance and compare them v, ith the CWG. v, herever possible. Our
research confirms that the dominant mode in HTSWG is the TE _ (see belowi mode

instead of the TE_ mode. Another new property of HTSWG is that the tangential

electric field and normal magnetic field of the TE *_ mode are non-zero on the

surfaces of walls This property is quite different from the idealized CWG in _hich

the tangential E and normal H on the surfaces are equal to zero.
So far the applied physics and engineering researchers' main interest in the high

frequency electromagnetic properties of high T_ superconductors has been the very
low attenuation of the EM waves and the,, have rarely been interested in other,

usually more intrinsic, EM properties. This research opens up a new chapter by

emphasizing one of the most important EM properties of the superconductors, i.e.
the Meissner effect. It can be shown that the weft-known boundary conditions for

good or perfect conductors are no longer valid and they have to be modified to
account for the Meissner effect or the diamagnetic property. The new boundary

condition {called the Meissner boundary condition) gives rise to different field
solutions hence new waveguide characteristics such as bandwidth, attenuation,

current distributions, and others. This model is not only applicable to the waveguide

but also to all microwave and millimetre wave engineering problems as long as

superconductors, instead of normal metals, are used.
In § 2, the most important dispersion relation of HTSWG is derived from the

wave equation and the Meissner boundary condition. Expressions for electromag-

netic field components and surface currents including the surface superconducting

current J,, and the surface normal current J,,, based on two-fluid theory are given.

Various parameters of HTSWG are analysed and compared with CWG. The
conclusions are given in § 3. Finally detailed derivations of some formulae are given

in the Appendices.

2. Theory

2.1. Wave equation and numerical solutions o] cut-off wavelen_Ith

In this section, we analyse a HTS rectangular waveguide with all four walls

superconducting. A rigorous formulation based on Maxwell's equations and the
Meissner boundary condition is used to obtain the unique electromagnetic field

properties in the HTS superconducting v, aveguide.
The governing wave equation (Helmholtz equation} and the Meissner boundary

condition for the longitudinal magnetic field H. of the TE mode in an air-filled

HTSWG are as follows:
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8H:____I H.=0 at x=0. x=a: v=0, v=b 121
)n :-L

_hcre the operator V r is the Laplacian operator in the transverse plane li.e.x.:-planel.

Propa_anon in the z direction is assumed. The parameters a and h are the HTSWG
v,_dth-and h_:ight, respectively, k,. is the cut-off wa,,enumber. ,:-L is the London

penetration depth, for HTS, its values vary from l0 -s m to 10-" m cBurns 1992). This

parameter, which is a measure of the distance of magnetic field penetration into the

superconductor, is very important not only because it can provide informatLon about
the fundamental mechanisms for superconductivity in materials but also because of its

sensitivity to the quality of the superconductor near its surface. V_'e call 12) the

Nleissner boundar2,.' condition. It accounts for the important Meissner effect in v, hich
the fields do not vanish abruptly from the surface of a bulk superconductor, rather.

the', decay exponentially into the bulk. The penetration depth ;-L iS the characteristic

decay length of the magnetic fie[d into a superconductor. It is obvious that ,,hen

';-t.---*zc. the second term of the Meissner boundary, condition approaches zero, the
above equations reduce to the boundary, condition (_?H::_?n)=0 for the CWG.
Therefore, the first term of(2) is related to the properties of the idealized CWG and the

secondary term is related to the properties of the HTSWG. Thus the Meissner
boundarY' condition can be taken to be of relevance to the two-fluid SC model.

We assume that the general solution of the governing equation is as follows:

H.=(A o sin k_¢+ ,4 t sin k___)(A2 cos kyy+ .43 sin ky)') (3)

_,here A o, .4_, A.,, ,43 are the unknown coefficients and none of them are equal to

zero. The k, and k_ are the unknown wavenumbers along the x and y axes. respectively.
Substituting (3) into the Meissner boundary conditions, we obtain two sets of

equations for k,_ and ky

I__ Ao_k,A t =0 (4a)
)-z

cos k,a\ ( sin k,a\k_a+_,L ) ,4 =0k_ sin k_a-----_L ) Ao- k_ cos 1
(4b)

I A,.-kr.4_ =0 (Sa)

(ky sin k_b cos:._kxa),/.4,.-(k_. cos kyb+ sin_.Lk'----_a_,/'43 =0 (5 b)

For non-trivial solution condition, the two determinants of coefficient matrix

ha_e to be equal to zero
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I

Zl,

cos k<a sin k_a
k, sin k_a- = -k_ cos k<a-

2- L )'L

=0 16ai

I
- --k v

":,L

cos k,h sin k)h

k,.sin kjh---: - -k_ cos k_.b- 2L
A L

=0 (6b)

Therefore. the two important dispersion relations in two transcendental equa-
tions are obtained from the above deterTninants as

-'-t,".< (7)
tan k:,a = (k._2L)z _-[

-¢'Lk" (8)

tan krb = (k_._.L) 2 _ I

The roots of these two equations describe the dispersion relations as a function of

the London penetration depth and dimensions for HTSWG. A graphical method is

used for solution as shown in Fig. I from which the cut-off features will be obtained.

Substituting (4 a) and (5 at into t3), we have (see Appendix A}

or

t ' )( ' )H_.=AoA.,cos<.<+_ _ink,x cosk,,.+G-Lsink,,

H. = A 1,43(k_;.L cos k.,x + sin k_x)(k_.XL cos ko'+ sin k_.v)

(9 a)

(9b)

It is obvious that kx # 0 and kr # 0 from (9 b), otherwise the solution becomes trivial.

Our dominant mode is designated to be TE 11. Thus the dominant mode is no longer the

TE_o mode. This important conclusion is completely different from that of CWG in

which the TE,o mode is dominant. The above formula, however, does cover that of

CWG in which H.. = Ho cos k=x cos k>.y when ,;-a--" y- as evident from t'9 at.

Substituting (3) into (1). we have

k'=k_,+k_ (lo)

therefore, the cut-off wavelength 2< is obtained as follows

lii)
#'c k <:
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5,1odes a= I mm a=2mm a=4mm u=Smm

TE _L 0.S*15 (20) + 1-790 (4 i)) 3.579 180) 7.158 (I 6.01
TE -'_ 0.'08 _I O) 1-415 <2o) 2-829 (40) 5-659 (8 0)
TE _ 0.555 (0.894) I-II (l "$91 2-219 (3.5-81 443_ (7.1551
TE _: 0-4,_6 _0.-0T) 00-'111414) 1-941 (2-S2,";) 3S_2 (565-1
TE:: 0-44,8 !()-4_51 0.895 (09"0) 1,77911( 1-9401 35777913 _I)
TE ,3 ().32 _)_(1.4.471 0,65£ (1).R94i 131_, ( 1.7S91 2 o31 13 5-S)

* T!;c [!-,Jrcs ,n parcnthc_c_arc the corresponding ,;ut-o)'l ,,.a'.c!cngthsfor 'he .first -;)xTE,. modesm
C"_'G

Cut-off v,a_elcngths for some TE ;''_modes _';.t.= 10 " m. a = 2/); for ).t.= 1()- _m. there is little
difference betv, een the ,,alues).

2.2. Field c,mp,ment_ _unt ,ur/[tcc currcnt di._trihutmn.s

The field component expressions for the TE mode can be determined from the

axial magnetic field H.. by means of the relations between the transverse and axial

components as follows.

From (9b). let Bo=Qk,. Co=2tk_ and Ho=,4:.43 for simplicit,,. Then the
magnetic field axial component H. becomes (see Appendix A)

H_ = Ho( Bo cos k ,.r -,- sin k=.v)( Co cos k,.y -,-sin k,.y) ( 12 )

where Ho is an unknown coefficient depending on excitations, Bo and C O are

proportionality parameters, but the.',' are different for different modes and penetra-

tion depth. The wave factor in the form of exp (jt:Jt-Tz) is assumed. The real part :_

of the propagation constant 7 is the attenuation constant, the imaginary part 3 is the

phase constant and _ is the angular frequency'.

Other field components can be expressed as

j3k_,
H,,=s_- Ho(Bo sin k__v-cos k=x)(Co cos k,.y + sin k>v) (13a)

&

j/3k),
Hy=--;_ Ho(Bo cos k_r + sin k,x)(Co sin k_y-cos k_.y) (13b)

jtn,uoky
E, =--_, Ho(Bo cos k_.v + sin k,.v)(Co sin k_..v- cos k_y)

(13c)

Jtn/a°k* Ho(- Bo sin k,x ÷ cos k_.r)(Co cos k,v+ sin kp')
Ex= _ "" .

(13d)

where/ao is the permeability of the material, assumed to be that of free space.

The wave impedance Z_ ') of HTSWG is defined as

E, E_. ('/_o (14)Zp = -- =
H,. H, fl"_
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M_des u= l mm a=2mm a=4mm a=Smm

TE _ 0-895 {20)+ 1-791) (41)1 3579 t80) 7158 (16.0)

TE :_ 0.'0g (If)) 1-415 (20) 2.829 (401 5.659 (8 01

TE _ 0.555_0.g94) I I1 (1"891 2219f3578) 4438 (7-155)

YE t-" 0.486 107071 0.9"1 (l 4141 1941 12 8281 3.882 t5-657)

TE:-" o448 iO4851 0._395 (0.9"01 I 790 i l q4(}l 3579 13.8gl)
rE _ 0.32 _) _04.47) 0658 10.894) 1-316 t t."gg) 2 631 (3.578)

+ T}:e ti.z,_res in parentheses are the _:orre_pondmg cut-off v,a_elcngths for the first six rE.. modes m

CWG

Cut-off v.a,,elengths for _ome TE pq modes (.;.L = I0 m. a=_h. for ,;.L= IO -s m. there is liule
difference bet_,een the values).

2.2. Field compom'nts amt ¢ur(ace current di.strihution,_

The field component expressions for the TE mode can be determined from the

axial magnetic field H: by means of the relations betv,een the transverse and axial

components as follo_s.

From (9b), let Bo=;.Lk_, Co=;.tk_. and Ho=A_Aj for simplicity. Then the

magnetic field axial component H. becomes (see Appendix AJ

H. = Ho(B,) cos k:,x + sin k_x)( C O cos k_y _- sin k_.y) (12)

where Ho is an unknown coefficient depending on excitations. Bo and Co are

proportionality parameters, but they are different for dtfferent modes and penetra-

tion depth. The wave factor in the form of exp (jo)t-';z) is assumed. The real part :_

of the propagation constant 7 is the attenuation constant, the imaginary part fl is the

phase constant and co is the angular frequency.

Other field components can be expressed as

H =_.'_',_ Ho(Bo sin kpc-cos k,x)(C o cos k,.v +sin k,.v)
" k: " "

(13a)

h jflk,

y =_-_ Ho(Bo cos k_: + sin k._x)(Co sin kyy-cos kp,')
(13b)

Jw/a°kY Ho(Bo cos k_c + sin k_,¢)(C o sin k,.v-cos krv)
E,- ki " "

(13c)

jco#ok, Hoi-Bo sin k_x+cos k_x)(Co cos kyv +sin k_y) (13 d)
Ey= _

where it o is the permeability of the material, assumed to be that of free space.

The wave impedance Z_ q of HTSWG is defined as

Z_ 'q=-=E" ---=E_ co#o__ (14)
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Figure 2.

{a)

Distribution of electric field E_ and Ey for TE _ mode in a cross-section, la) E,:

(h) E>,.

The instantaneous field expressions for the dominant mode TE _ in HTSWG can

be obtained as

H. = Ho(Bo cos k..x + sin k,,x) (C O cos k_.y+ sin k>v) cos (.)t- flz) (15a)

H_ = _.k¢_,Ho( Bo sin k_.v-cos/,'rv)( Co cos k_..v + sin k,..v) sin (cot- flz) (I 5 t,)

H,. = --kf H°(B° cos k_x-,-sin k_x)(Co sin k_..v-cos k_..v) sin (cot-flz) (15 c)

°J_°kY Ho(Bo cos kQ¢ + sin k,x){Co sin k?-cos k>.>') sin (cot-flz) (I 5 d)
E_- k_ " "

co_ok_

E_.=--_ Ho(-Bosink.x+cosk.x)(Coc°skyy+sinkry)sin(cot-flz) (15et

2r_
fl= (16)

Aq

where k#, fl, and _.g are the cut-off wavenumber, the phase constant, and the waveguide

wavelength of the TE _ z mode, respectively./% and ky are the wavenumbers of the TE _ L

mode along the x and y axes, respectively. Note that the superscripts II for the

dominant mode have been suppressed here and below unless otherwise stated.

The above equations (| 5 d) and (15 e) demonstrate obviously that due to Bo and

Co being very small, the space distribution of the electric field Ey of the TE _x mode is

proportional significantly to cos/(:_ sin ky>', which means that the tangential electric
fields exist on the surfaces (x-- 0 and x = a) of HTSWG and has maximum at y _ h. 2.

The space distribution of the electric field E= is proportional mainly to

sin/q._coskyy, which also means that the tangential electric fields exist on the

surfaces O' = 0 and y = b) of HTSWG and are a maximum at x _ a/2. The unique and

novel property of the finite electric field tangential components on the surfaces of

HTSWG was obtained first, which is completely different from that of a perfectly

conducting CWG since, for H, @0 and for a finite surface impedance at microwave

and millimetre wavelength, the tangential components of E on the wails are finite.

For details of the field distributions see Fig. 2.
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Distribution of magnetic field H,. H_ and H. for TE t_ mode in a cross-section.
(a) Ha: (b) H,.: (c) H:

The above equations (15a), (15 b) and (15 c) demonstrate obviously that as Bo
and Co are very small the space distribution of the magnetic field Hy of TE tt mode

is significantly proportional to sin k,,.,ccosk_y, which means that the tangential

magnetic field is very small on the surfaces (x=0 and x =a) of HTSWG and normal

magnetic fields exist at surfaces of y =0 and y--b. The space distribution of the

magnetic field H, is proportional mainly to cos k__,csinky)', which means that the

tangential magnetic field is also very small on the surfaces of y=0 and y=b of

HTSWG and the normal magnetic field exists on the surfaces of x=0 and x=a. On

the other hand, due to H=_csink__,:sink_,. the magnitudes of the tangential

magnetic fields are negligible on all four surfaces. Details of field distributions are

given in Fig. 3. The above results demonstrate that the magnetic field lines are not
continuous in HTSWG (Orlando and Delin 1991), which is in agreement with the

Meissner effect, but the magnetic flux density B is continuous in and out of HTSWG

walls because B--/to(l'-I + M) (M is the magnetization density in the walls and is not

equal to zero). This also is a unique property in HTSWG, which does not exist in
CWG.

The London equations and the two-fluid model are used to investigate the
current distribution. The total conduction current density consists of the supercon-

ducting current density ], and the normal electron density |, based on the two-fluid
model. This model assumes that the conducting electrons in the HTSWG walls are

divided into two categories. We use a different method to describe their distribution.

The'surface superconducting current l,., due to superelectrons is calculated based on

the London relation and appropriate boundary condition first. Then the normal

surface current J,, due to normal electrons and the losses are calculated using the

approximate resistive boundary condition and the perturbation approach.



ThesuperconductingcurrentJ, in four isolated walls model in which each ,halt is
considered as a simpl?-connected superconductor using thin film substrate and can

be gv, en as

I

This e_uatton _s called the London relation. _here A=.uo,;.L.A. in units of

Te_la-m.eter. is the _ector potential in HTS",VG. Let the vector potential inside the

_t_r-'.iilcd ho!lo_ region in the ,aaveguide be A_. It satisfies the follo`hing equations.

V×A_=B I I-'/_)

k:A_ + VV.A_
E_ -- .

./t "_.l.,'_l_ )

Il-c)

Thus London relation guarantees that the vector potential is a "real field) that is

definitel.,, specified. Equation (17cl is called the Lorentz gauge. _hich gi_es rise _o
_he rc!ation bet_een electric field E and _ector potential A_ in the air region.

Before solving the current distribution problem, it is important to determine the

boundary conditions at a boundary between the two media (here the superconduct-

ing medium and the air). The boundary condition on the tangential components of

fields (J, and A,,) for the simply-connected SC is

1
I,,=-_A_, (IS)

where the subscript "at" denotes the component tangential to the boundary in the air

or the applied field region, the subscript "st' denotes the component of supercurrent

density tangential to the boundary in the HTS. Note that J,, is the bulk current.
Once A= is known, the current density K,,. and surface supercurrent density J,,, are

readily calculated. The solution satisfying (17 b) and (17 c) is obtained from B as

follows

,4_: = A o( Bo sin k_.v + cos k,.v)(C O sin k_..v+ cos k_.y) ( 19 a )

A aj;

j,4 ok
=_- (Bo cos k_x-sin k=.v)(Co sin k_.v +cos k_.v)

/.tok_
---k7 f- Ho(B o cos k,,.v + sin k=.v)lCo sin k_.y-cos k,.v)

(19 b)

jAoK_
A=_.= --_ (Bo sin k,x +cos k_.v){Co cos k,y- sin kyy)

+,,otq
kf Ho(Bo sin k=x-cos k,x)(Co cos k,..v+ sin k_.v)

(19c)

The surface supercurrent distributions on the isolated walls are obtained (see

Appendix B) as follows
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y = 0 plane:

L, = J,_a. + J,,:a:

_-_X| k_ H°IB°c°sk_x+sinK_x)+ (Bocosk_.r-sink_x) a_

,4o,_L
A (Bo sin k_x _cos k___:)a: (20a)

v= b plane:

JsJ,= J_,a, + J_s:a:

],<L k:" Ho(Bo cos k_.v+sin k_.v) . _-- (Bo cos k,x-sin k_x) a_

Ao}.t.
+ _- (Bo sin k_x+cos k_.-c)a: (20 b)

x = 0 plane:

J,,, = J.,.a_, + J,,=a=

_-_ - _i- Ho(Cocoskyv+sinkyy)+ z(Cocoskyv-sink_y) ay
c " " "

.4O;-L
A (Co sin kyy+cos k_y)a: (20 c)

x = a plane:

A L kg H°(C° cos kyy+sin kyy)+ (Co

Ao2t.
(Co sin kyy + cos kyy)a=

cos kyy-sin k_y)] ay

(2O,/)

where d,_., J,. and J_,= are surface supercurrent magnitudes on the walls along the

x, y and z directions, respectively. We consider here that the superconducting current

decays exponentially in the walls, therefore the current is mainly carried by the

superconductor surface adjacent to the air in the HTSWG. It is easy to see that the

surface supercurrent and bulk current are very large because the amplitude of J., is

proportional to I/,;.L (A=#o2_ which is about the order of 10_. All high-T, materials

are type II superconductors. In the Meissner phase, we assume that the critical field

H,t _7.7 to 385Am- t (depending on temperature) for HTS sample

YBa:Cu30y(88.2k, H-c axis) (Wu and Sridhar 1990), therefore Howl3 to

660 A m- t, then the theoretical values of supercurrent density are estimated to be
about 106-8 Acre -2 which is in excellent agreement with other data (Burns 1992,

Heinen et al. 1990, Miranda et al. 1991, Levenson et al. 1991). The distribution of

surface supercurrent of HTSWG is shown in Fig. 4. (It should be noted that the
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Figure4. Distribution of surface supercurrent and normal current on _ails forTE _ mode
in a cross-section: [a) r=O plane; _h)_=a plane; (el } =0 plane; td) _=h plane.

distributions of the real and imaginary parts of the >urfacc supercurrent of HTSWG

are same. )
The surface normal current distribution at its boundaries can be obtained using

approximate resistive boundary, condition n × H =], ISenior 1975) as given by

on the y=0 plane:

]. = J,.:a.. + J,..a_

jflk,, "_
= -_._ HoCo(Bo sin kxx-cos k__v)a: + HoCo(Bo cos k___ + sin k,.'c)a, (,1 a)

on the y = b plane:

],.= J,.:a:+ J,..a.

j_kx
= _._- Ho(Bo sin k__v-cos k=,:)(Co cos k,.b-,-sin kvb)a:

- Ho(Bo cos k_._ + sin k,x)(Co cos k_b + sin k,.b)a, (21 bt

on the x = 0 plane:

]_. = Js.:a z + J,._a_

= _jflk, HoBo(C ° sin k#-cos k_)')a:-+-HoBo{Co cos k_.y+ sin k_.y'la,. (21 c)
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on the x =a plane:

J,. = J,.:a: + d,,,ya_

jflk,
==w- HoiBo cos k_a-sin k_at(Co sin k_.v-cos k,y)a:

k/"

-Ho(Bo cos k,a + sin k,a)(Co cos k,.y-.-sin kvy)a _, (21 at)

,._here J_,,_,. Js,, and J_,,. are the surface normal current magnitudes on the walls
alon,, the x. v and _- directions, respectively. It is easy to see that the distribution is
the _m¢ as that of the surface supercurrents. The losses of HTSWG come from the

surface normal currrent flowing through the small surface impedance. It is predict-

able that the losses are very small because factors Bo and Co are very small. The

distribution of surface normal current of HTSWG is shown in Fig. 4.

2.3. Attenuation coe/ficient

The attenuation (caused by the surface normal current) based on the two-fluid
model in HTSWG v, alls can be calculated by the perturbation technique as gi,,en by

(see Appendix C)

__ = 3k;k;fl" +k_(k_ "_ "• " " +.k;) (._,)_pq_ Pt{z) R, , --
2p i. b_l.Lo[3k ;

For the TE t_ mode. a=2mm, b= I mm. k,=2m4.0017mm, ky=2rt/2.001 ram.

k¢= 2r_ 1.79 ram. substituting into (22). we have approximately

L [o.36 + (_]']
:c11_22x IO-'_RJZ--I_--- \fJ_dBkm -t (23)

where f, is the cut-off frequency of the TE _t mode. R, is the surface resistance of the
HTSWG walls in ohms. The unit of ._.zis the millimetre. Note that the attenuation is

not only proportional to f, 3 because R,_cf 2 (Romanofsky and Bhasin 1991), but is

also proportional to ,i_. The relation curve of the attenuation coefficient "*versus the

frequencyf is shown in Fig. 5 where R,=5-0 x 10-:sf2 f/and a=2b--2mm.
The losses in HTS waveguides are generated from two sources: superconductor

loss and dielectric loss. Typical superconducting waveguides used in microwave and
millimetre-wave circuits use low-loss dielectrics or free space, so the dominant loss

mechanism is the superconductor loss. This kind of loss is caused by the current of

normal electrons in superconducting bulk based on the two-fluid model theory. The

paired superconducting electrons are dissipationless because they cannot be scat-
tered without breaking pairs. The microwave surface resistance of superconducting
films has been found to be as low as the order of micro-ohms. These surface

resistance values are lower than those for Cu at the same temperature by a factor of

several tens. Such a surface resistance gives a small power loss. For example,

R,--ll6mfl (77k) at 58-6GHz (Heinen et al. 1990). ,it= 10-"m, the attenuation
coefficients are found to be about 1.1 x 10-"dB km -t, which is much smaller than

that of CWG (see Fig. 5). If the penetration depth ,;-c= 3.6 x 10- ' m for the case of



conduction along the c-axis and the surface resistance is equal to 103too (60k) at

14567GHz (How et al. 1992), the attenuation coefficient is found to be 9.3

× 10-YdBkm -_

2.4. Phase relocttv, vrouP celocity and phase dispersion

Superconductors ha_e a frequency-independent penetration depth to the tera-

hertz ran'.z'e that determines field penetration into the material rather than a

Frcquenc v-"dcpendent skin depth as for normal conductors. This means that super-

c_mduct,_rs introduce practically no dispersion into a micro_ave circuit. Dispersion

tn HTSWG. if any'. is due to ihe frequency dependence in attenuation v,h[ch has

been shown to be negligible because of the very small attenuation coefficient. The

dispersion caused by frequency dependence of the phase velocity is almost the same

as for the CWG. The phase _elocity cp and the group velocity z'_ of the TE tt mode

can be sho_n to be gi,,en by

/_]k1_q CC/OCIty

(0 L"

-=C;t',, = _ : t-"
124,

group celocity

, .
(25}

,,here c is the speed of light in free space.

Our work shows that the phase velocity t,p of the HTS waveguide for the

dominant TE _t is slightly smaller (about 0.1%) than that of conventional wave-

guides with the same dimensions and frequency becausef¢ is smaller than that of the

CWG. Therefore, the dispersion produced for the same geometry is practically the
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same. In summary, the signal distortion due to dispersion in the HTS waveguide is

reduced dramatically because it has no dispersion due to attenuation.

2.5. Ma.,:imum transmttted po_er ,'dominant mode,

The maximum transmitted pov, er in HTS waveguide is given by Isee Appendix
D_

Pm_,=--IE,,,,i 1 - 1261
8,'70

where r/0 is the intrinsic impedance of the medium inside the waveguide and IE .....

the magnitude of the electric field intensity is given by

!Em.,i = o (27)
Kc

In the Meissner phase, the maximum electric field intensity and pov, er in

HTSWG are smaller than that of CWG t29kVcm and 11 kW). For example, they

are about 60Vcm, 13roW for H_t_,77mAcm -t and 3kVcm -t, 32W for H_t

3.85 Acm-t respectively, It is clear from eqns _26) and (27) that the transmitted

power and maximum E are dependent on the London penetration depth (k_ z I ';-t,).
The larger the London penetration depth, the larger is the transmitted power and

maximum E. It should be noted that the penetration depth also increases with

temperature, which means that more power is carried by the HTS waveguide.

3. Conclusions

A theoretical analysis for the HTS rectangular waveguide is presented. It is based

on HTS electromagnetic theory and the Meissner boundary condition. The import-
ant implications of this paper are: firstly, the bandwidth of the HTS rectangular

waveguide is only 1.27:1 which is less than that of a conventional metallic waveguide

with the same dimensions; secondly, the tangential electric field and normal

magnetic field of the TE tt mode are finite on the inner surfaces of walls, which
demonstrate another quite different property between the HTSWG and the idealized

CWG; thirdly, the magnetic field lines are not continuous in HTSWG, which is the

result of the Meissner effect; fourthly, because the surface supercurrents are very

large and the surface normal currents are very small (the attenuation is very small),
the attenuation coefficient of the HTSWG is smaller than that of the CWG by about

10"*-I0" times for different surface resistance and penetration depth. Also, the

dispersion caused by attenuation is negligible. This is also quite different from the

CWG: fifthly, in the Meissner phase, the maximum electrical field intensity and

transmitted power are smaller than that of the CWG because the critical field H,t is

very small; sixthly, the dispersion is negligible compared with the conventional

waveguide, as there is no dispersion due to attenuation; and finally, the wave

impedance Z_ has the same expression as the CWG.

Superconducting waveguides distinguish themselves from normal metal wave-

guides in the microwave and millimetre-wave bands. Firstly. much lower surface

resistance can be obtained with superconductors, giving rise to much lower loss.

Secondly, the superconductors have a frequency-independent penetration depth that

determines the field penetration into the material rather than the frequency-
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same [n summar>. :he szenai di_tortzon due to dispersion in the HTS _a'.eguide _s

reduced dramaticaI1F because it has no dispersion due to attenuation.

The maximum tran_miued po,.,,er in HTS _a_eguide is given b_ fsee .\ppcndix
D_

a/_ ./": L2
---'( (_))

_her_: _l,, i_ the intrinsic impedance of the medium inside the _a_e_uide and E_I,

_he magnitude of the electric field intensity is ei_en b;

E ..... = H,, (2 _ )

[n ti_e \[ei_-,_ncr pha>c, the maximum electric licld [nten_lt,, and po_er in

HTSWG are smaller than that of CWG 129kVcm and I I kW!. For example, the','
are about 60Vcm, 13mW for H,.,>-J7mAcm -_ and 3kVcm -_, 32W for H_._

--3.85Acm-_, respecti,,ely. It is clear from eqns (20_ and (27) that the transmitted

pov, er and maximum E are dependent on the London penetration depth Ik_ :c 1 ,;./,).
The larger the London penetration depth, the larger is the transmitted power and

maximum E. It should be noted that the penetration depth also increases with

temperature, _hich means that more po_er is carried b', the HTS v,a,_eguide.

3, Conclusions

A theoretical analysis for the HTS rectangular v_a_eguide is presented. It is based

on HTS electromagnetic theory and the Meissner boundary condition. The import-

ant implications of this paper are: firstly, the bandv, idth of the HTS rectangular

waveguide is only 1.27:1 v,hich is less than that of a conventional metallic waveguide

with the same dimensions: secondly, the tangential electric field and normal

magnetic field of the TE _ mode are finite on the inner surfaces of walls, which

demonstrate another quite different property between the HTSWG and the idealized

CWG: thirdly, the magnetic field lines are not continuous in HTSWG, which is the

result of the Meissner effect; fourthly, because the surface supercurrents are very

large and the surface normal currents are very small {the attenuation is very small),
the attenuation coefficient of the HTSWG is smaller than that of the CWG by about

10a-10" times for different surface resistance and penetration depth. Also, the

dispersion caused by attenuation is negligible. This is also quite different from the

CWG; fifthly, in the Meissner phase, the maximum electrical field intensity and

transmitted power are smaller than that of the CWG because the critical field H_t is

very small; sixthly, the dispersion is negligible compared with the conventional

waveguide, as there is no dispersion due to auenuation; and finally, the wave

impedance ZC '_ has the same expression as the CWG.
Superconducting waveguides distinguish themselves from normal metal wave-

guides in the microwave and millimetre-v,a_e bands. Firstly, much lower surface

resistance can be obtained with superconductors, gi_ing rise to much lower loss.

Secondly. the superconductors have a frequency-independent penetration depth that

determines the field penetration into the material rather than the frequency-
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dependent skin depth characterizing normal conductors. Thts means that supercon-

ductors introduce no dispersion into a microwave and millimetre-wave system.
Based on these unique characteristics, the HTS waveguide is reasonably attractive

for several applications.

This paper has reported that the Meissner model presented here has been proved

to be valid and powerful for a more rigorous analysis of superconducting electro-
magnetic waveguides than those previously attempted which only considered the

surface resistance. It should be noted that the Meissner condition has fully
accounted for the EM property of an SC surface in the microv,'ave and millimetre-

wave bands although it is only indirectly related to the attenuation or surface

impedance which is due to the presence of both superconducting and normal
electrons, as in the two-fluid model. This is the first successful attempt to model the

propagation characteristics of HTSWG using the Meissner boundary condition. We

have shown that the Meissner boundary condition is a key element in boundary
value problems in superconductor electromagnetics without which its intrinsic

electromagnetic properties will not be complete.

This paper has discussed only the case of four isolated SC walls (thus four simply

connected SCs) in order to simplify the calculation of the surface current. In the

future the case of doubly connected SC waveguide with all four wails as one piece of

SC will be considered wherein the surface current will be seen to depend on the

magnetic flux quanta passing through the waveguide. Also the anisotropic resistivity
effect on the SC waveguide propagation as well as the scattering properties will be

presented.

Appendix A

Axial magnetic field H:

From (4a) and (5a), two relations can be obtained as follows

Ao = kx2LA t (A ! a)

A2 =k_LA 3 (A 1b)

Substituting above two equations into the general solution (3), we have

Ao Az

= A tA3(;tLk,, cos k_ + sin k,,.x)(;tLky cos k_y + sin kyy)

= Ho(B o cos k_.x + sin k,?:)(Co cos kyy + sin k_y) (A 2)

where Ho = AtA3, Bo =k_2L, Co--kr2z.

Apl_ndix B

Calculation of surface superconducting current

y = 0 plane:

From (18), we have
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Therefore. the surface currents can be obtained based on the Meissner effect as

t'ollov,, s

J .... = t J,_ exp I.v }.c) dr

t.i, ,"( i

- 'H,IB cosk_x+sink_.v) I (C'_sink'v-c°sk_viexplv}Lldv

j.4,_k, [ o
-,'_/3 IB°c°sk_v-sink_x/ iC°sink_y+cOSkylexp(ySLldv

•v - •

= - _._ H,_B,_cos k,.,---sir,k,_,-,L l--_.;.J, -i: J

.... .\/_ !B_c°sk<v-sink"vl L i-_;,#[i-' j IB__

j.:= __' [°_B o sin k_.,¢ +cos k,x) (C O sin k>v +cos k,.y) exp Lv;.L) dv

Jr

= - ,¢ (Bo sin/,'.,:.',:+cos L i _-i-.,.<_L _:-] tB3_

Because Co and }-L are _ery small. _e ha_e

liokv/.L j.4ok,}.L
. k,.v)_ _i Bo k_.v-sin k___¢) (B4)J" _ Ak_ Ho(B o cos k,x + sin ( cos

.4 ,>)-L

Y,: _ - ---j_--- (Bo sin k,.v + cops k,.v) (B 5)

y= h plane:

J'**= t j_ exp (--(y--b)..;.L) dv
.b

_ok_. f o_( C o= _ Ho(Bo cos k,x +sin k,x) sin k_..v-cos k_v) exp (--(.v--b)/5.L) dy

j.4 ok, fb _- -_- (Bo cos k,,x-sin k_x) (Co sin k>r+ cos kyy) exp (-(y-h) ";-L) dv
(B6)

_,ok. [CCo;,.L _ ;,._k_) sin k,.b +(Co/'_k,- ;'.L) cos /<,b]- Ak} Ho(Bo cos k.,x + sin krv) 1 -e (}.Lk_) 2

J,,.=-,_(Bosink,x+cosk,x) (Cosink,.y+cosk_.yiexp(-O.-b),2L)dY (B7)
° " ,ab

._ _Bosi_k,x+co, k,._ _C-°-_L-;5<tsin<.t,+(Co_,f*,+_.Oco_<a
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Because Co and ";-Lare very small, and cos kyb _ - 1, then

j _ #oky2L jAok_2L
"_ Ak_ H°(B°c°sk_x+sinkxx)+ _ (Bocosk,,x-sink___) (B8)

Ao,;.L
J_= = _ (Bo sin k___c+ cos k_._c) (B 9)

Similarly, we have J,,y and J_,.. on the x=0 and x =a planes.

x = 0 plane:

#ok_ FBoJ._.k_ 4 ;'.cl
J_, = _ Ho(C o cos k,y + sin k,v) L i + (/._.-.)2 j

Aft (Co cos k,.v-sin k,.,') J (B 10)

j,,= A° F.,+ao .Zk_,l
-_- (CO sin k,y +cos k,y)L (X_k,),+ lJ

Because Bo and )-C are very small, we have

j .,. #okx2t.
,,y--_ Ho(Co cos kyy+sin kyy) jA°kY2CAfl(CO cos kyy-sin kyy)

(BII)

(B 12)

Ao).c

J_ _-. - --_ [Co sin k,y + cos kyy)
(BI3)

x = a plane:

P°k_Rc Ho(Co cos k_y + sin k,y)-_
J ssy "_

j A ok ,;t L

A_
(C Ocos kyy-sin kyy) (B 14)

Ao,;.c

J,_, _ _ (Co sin k_ + cos kry)
(B 15)

Apoemllx C

Calculation of attenuation coefficient

Using the commonly accepted formula for power in waveguide electromagnetic
theory, it is easy to show that transmitted power or the time-average power flowing

through a cross-section of HTSWG for the TE pq mode may be expressed as:



,,o: R.I t _H',_a,d,

[ "a t'b=:, R,Z'_ _ (H,H*- H,H_ d.vdv

.,,_ H., :ZTfl (B_,,ink_v-cosk_.vj:IC. cosk,y-,-sink,.'_): d.vd',
_ &

2k_' .H,_ Z/7_ p (B ocosk,.v+sink,-vl:lCosink_3'-cosk._3): d.vd:
w 0 _ ()

-'-< <" " 1' sin k- sin- k.h
4k ' k a

-k_ (I-B_)- 4k_- sin2k'a-I%.sinZl<'a

cosin 2k,b + kl. sin-" k>,/_
(CI)

In order to calculate the time-average po_er loss caused by the surface normal

current in the walls per unit length, v,e must consider all four walls. Owing to

J,,(y-,-0/= -],,(y = fi). J,,,( x =0)= -],,( v = a), the total power loss is then double the
sum of the losses in the walls at x=0 and v=0. We have

_- -[ L " Y=PL(_)=2[PL(a)],,=o . "_P (-)] o (C2)

v,he re

[PL(_')]y =o = _ !J,.(y =0)i: dx

l Co [-fl-'k_ , 2
=.;R,_,_L k_ lHol-Co(Bosink_x-cosk_x)-"

+ !Hol'Co(Bo cos k,x+sin k_x)- dx

1 R,[Hol'C8 (1 +Bo)+ sin 2k,a sin a k=a

,_ I -/3o+ "_(1 + B°) 4k=- -- sin 2k,a - -k-_sin" k=a
(C3)



).[e¢ssner model of superconducting rectanyuDr :_ateguMcs 1169

[Pt.(z)L =o = ._ iJ_.(x = 011-' dv

=5 R, Jo I Ho]'Bo(Co sin kyy-cos kyy)"- L k:

+ !Hoi -'B_(Co cos kyy + sin kyy) z] dy

=_R_:H,)I'Bs [_ k_ (l+C°)+--sin2kyb+--sinZk'b4ky k,.

+ {1 +C_t- sin 2k,b-_ sin" k,b (C4)

Owing to sin 2k_a. sin-' k_a. sin2krb, sin-'krb, Bo and Co being very small, the
higher small terms are ignored and we have

ab 12 _2Z_q ab
P_"_--8-lHo _T-=_ iHolrro

where Z_ q is the wave impedance of TE pq mode.

(C 5}

Substituting (C3) and {C4) into (C2) and omitting the higher small terms, we
have

! ( 22 ( 22

Bk,'x I . _ k.'x

aL\ )

Therefore the attentuation constant of TE pq mode can be obtained as follows

(a = 2b):

+ k_ (k, + .ky )"rPq-PI(z) R _.2 3ky_k_'# • 2 _ :
- 2P,--T = " .L bt_lao_k_ (C 7)

For the dominant TE _ mode, a=2mm, b=lmm, k_=2rt/4.0OI7mm, ky

= 2rt/2.001 mm, k_=2_/I.79 mm. substituting into (C 7), we have approximately

f_ 0.36+

:t _ _2.2 x 10-_R_._ (C8)

where ,i_ is the London penetration depth in millimetres.



I l-o

.,_ppendix D

Ca/_u/_tton o� m_:.wmzmz poner

From _D II _¢ ha_e

= E,, --i<-'= H,,: .( k/

: (: ( r)/-L,_

i,, ,!:c maximum electric tSeld for breakdov, n.

H,, := E_,_, "

Subst_tutlon ,_t I D 2} into IC 5/ yields

7.

,(,k):
• _ Erna _ -

(DI)

(D2)

_D3_
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Single-index summation procedure for calculating antenna input impedance
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Using the cavity model and Green's functions, equations are derived to express the input

impedance of a rectangular patch microstrip antenna as a sum over a single integer index.

It is shown that the computer execution time for calculating the input impedance is greatly

reduced using the single sum approach rather than the popular double sum approach, without

sacrificing accuracy. Double sum solutions were found to take at least twice as long to

perform as those of the single sum solutions. The validity of the theoretical results was

verified by comparing them with experimental results.

Notation

xp

Yp

ko

k

J

Ez

x-coordinate of probe location

y-coordinate of probe location

transverse Laplacian operator

free space wavenumber

rectangular-patch (cavity) wavenumber

cavity modal wavenumber

(-1) la

z-directed electric field confined within the cavity
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Using the cavity model and Green's functions, equations are derived to express the input

impedance of a rectangular patch microstrip antenna as a sum over a single integer index.

It is shown that the computer execution time for calculating the input impedance is greatly

reduced using the single sum approach rather than the popular double sum approach, without

sacrificing accuracy. Double sum solutions were found to take at least twice as long to

perform as those of the single sum solutions. The validity of the theoretical results was

verified by comparing them with experimental results.

Notation

Yp

vt2

ko

k

L_

J

Ez

x-coordinate of probe location

y-coordinate of probe location

transverse Laplacian operator

free space wavenumber

rectangular-patch (cavity) wavenumber

cavity modal wavenumber

(.1) 112

z-directed electric field confined within the cavity



Ez!

Ez U

J

J_

{O

_m

_o

Io

5(x-x )

8(y-yp)

am

a

b

e(m)

e(n)

Z

ZDS

ZSS

Z_,m

f.(x)

g (x)

single-sum cavity electric field for y _ yp

single-sum cavity electric field for y < yp

probe (source) current density

z-directed probe (source) current density

cavity angular frequency

modal cavity angular frequency

permeability of free space

Amplitude of z-directed current density (source)

Dirac-delta function used to model x-directed current density contribution at probe location

Dirac-delta function used to model y-directed current density contribution at probe location

complex modal constant associated with the z-directed electric field

modal function associated with the z-directed electric field

patch length

patch width

Neumann number (= 1 if m = 0, = 2 if m* 0)

Neumann number (= 1 if n = 0, = 2 if n, 0)

probe impedance

double-sum cavity impedance

single-sum cavity impedance

double-sum cavity input impedance at probe location

double-sum cavity input impedance at probe location

x-dependent single-sum electric field modal function

x-dependent single-sum electric field modal function

complex constants associated with f_(x)



H

£(y)

f_(Y)

C_, D_

E_, F_

az

real constant associated with f_(x)

magnetic field intensity

x-component of magnetic field intensity

single-sum sinusoidal function for y > yp

single-sum sinusoidal function for y < yp

complex constants associated with f,(y)

complex constants associated with f,(y)

complex constants associated with g_(y)

single-sum propagation constant

x-directed unit vector

inward-directed unit vector normal to cavity wall

ohms

3

1. Introduction

Several authors have produced fine work concerning microstrip antennas and their various properties, such

as input impedance, Q-losses, radiation, etc. (Carver and Mink 1981, HoweR 1975, Pozar 1982, Agrawal

and Bailey 1977, Dereyd and Lind 1979, Deshpande and Bailey 1982, Watkins 1973, Lo, et al. 1977).

Many previous works (James and Hall 1981, Lo et al. 1979, and Richards et al. 1981) have used the cavity

model analysis to derive the electric field and input impedance of various microstrip antenna configurations.

Usually, the plane of the microstrip is viewed as one geometric region, with length a and width b. This

approach provides quantifies which depend on double-summation solutions summed over two integer indices.

Other authors (Chadha, et al. 1981, Alhargan et al. 1991) have used reduced single summation techniques

to find Green's functions for microstrip circular disk and annular ring configurations. In this paper, the

rectangular-patch microstrip antenna is analyzed and theoretical and experimental data are directly compared.
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By viewing the plane of the microstrip patch as being two separate regions, I and II, bordered by the

ordinate of the antenna's thin-probe coordinate, y = yp, the electric field and the input impedance can be

expressed in terms of solutions which are summed over only one integer index. This single-sum approach

greatly reduces execution time, as compared to the double sum approach.

The execution times are compared, and the efficiency of the single-sum approach is demonstrated.

2. Theory

2.1. The cavity model

Authors Lo, Solomon, Richards and Harrison (1979, 1981) developed an analysis of microstrip antennas

by modelling them using a iossy cavity bounded by electric walls on the top and bottom, with magnetic walls

on the sides.

Figure 1 is the physical representation of a cavity model. The model applies to thin-substrate microstrip

antennas whose substrate thickness is ,: 1% of a flee space wavelength. Fields underneath the top conductor

(patch) and above the ground plane are determined by the cavity model such that the electric fields in the

antenna structure and the input impedance at the probe position can be determined.

The cavity model assumes that the magnitudes of the tangential magnetic field components at the edges

of the patch are negligible, implying a high-impedance condition at the boundary. This condition is equivalent

to modelling the perimeter of the patch with magnetic walls. The electromagnetic field components within

the cavity are obtained by solving the appropriate Maxwell's Equations within the cavity, subject to the

appropriate boundary conditions. It is assumed that the electric fields within the patch are z-directed and

invariant with respect to z, clue to the presence of a thin substrate.

2.2. Double-sum approach

2.2.1. Electric field derivation

The z-directed electric fields under the patch due to a z-directed current source (probe) must obey the
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inhomogeneous Helmholtz Equation •

(v, 2 , t 2)E .jo, (Y._)--jo_ 0J, O)

where, J, is the z-directed current density on the probe. Since such probes are usually very thin with respect

to the excitation frequency, delta functions have to be used to describe the current density •

J = I o 8(x-xe) b(y-yp ) (2)

where, (%, yp) is the coordinate of the probe position on the patch.

of a Generalized Fourier Series,

Assuming Ez can be expanded in terms

where, am. is a constant, and tFm(x,y) = Eo Cos(m_rda) Cos(n_y/b), such that E0 = Vo/d is constant,

d = substrate thickness, and the tFm's represent modal solutions to the homogeneous form of (1).

Substituting (3) into (1),

where, k_ 2 = (mgx/a) 2 + (nrcx/b) 2 • Multiplying both sides by Tm*(x,y) and integrating from x = 0

to x = a, and y = 0 to y = b, over dS = dxdy, the z-directed double-sum form of the electric field under the

patch becomes •

(mnx ) __ (nnyp)Cos ( m _ x) Cos _ Cos ( ) Cos _(

ab ..o ..o ( k2 _ k 2 )

m)e(n)

The Neumann numbers e(m) and e(n) are, in general, represented as



e(la) = [ 1 , la = 0 ; 2, ta,' 0 ], and Id= k2o e,(l-j6). The amplitude coefficient from (4) is •

a
m

< t., ,I,.) ( k2- k.2)
(6)

Here, the inner product is defined as •

//(x,y), g(x.v) > o I I Y(x.v) g "(x,y) as
$

(7)

and < tPm_, Wm_ > = (ab) / (¢(m) ¢(n) ).

2.2.2. Input impedance

Since E, is assumed to be invariant to z, the impedance at the probe position is "

d

V 0 -d E ( xp , yp )
e z _ = T.

1 io io

(8)

where, Io is the probe current. However, the effect of the probe reactance,

order to obtain the overall input impedance at the probe position •

Xf, must be accounted for in

X f .. 111o (9)

where t is the probe thickness and vl0 is the free space impedance.

Evaluating Ez at x = x_ , y = yo, from (5) gives "



ab =.o _ [k 2_ k 2]

w,l_ _. m'l_X .._ .._(.....)cos(-------_P)cos( )e._( )_(m) _(n)
a a

(1o)

Therefore,

-j to Ixodc 2

abe r m.o _0

cos (mn-----f-X)eo6(mnxp) e°s (nnY) e°s (nnyp)e(m) e(n)
a a b b

[ a_ , (1 -j IQror) _= ]

(11)

where, k2cff -- er( 1 - 6cff)k2o and 6 = 6ar = 1/QTOT. Therefore, the input impedance seen at the probe is

z,,,_ _ zt_ •./x: 02)

where, "DS" refers to double sum.

2.3. Single-sum approach

2.3.1. Electric field derivation

Referring to figure 2, the patch is divided into two geometric regions: region I, where y > yp and region

II, where y < yp. Solutions, for the electric field must be obtained for each region, in accordance with the

inhomogeneous Helmholtz equation (equation (1)). It is assumed that •

m

E ..fix) gO,) • r. y.(x)g.(y) (13)
moo

where, f and g depend on the modal index m ( m = 0,1,2 ...), and

fm (x) = A,eo_ (fix) * B,.sinC[_x) (14)
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with Am and Bm being complex constants. The required boundary conditions are •

1o

Enforcing the boundary conditions at x = 0 and at x = a gives •

E = __, A Cos (mnx) g.(y) (16)
a

Substitution of (16) into (1) , after multiplying each side of the new equation by

integrating from x=0 to x=a, gives "

Cos(mr_x/a), and

0_ (ran)5 : e(m) (mnxp)[ _ - _ • k ] g.(y) =jta, ol o _ Cos _ 6 (y - yp) (17)
_y2 a a a

The Green's functions solutions g_(y) in the y-direction are continuous at the y = yp boundary. However,

the derivatives at this boundary are not equal due to a jump condition from the probe excitation. From Felson

et al. 1993, the components of the Green's functions in regions I and II can be expressed as •

g.( y ) • A./.( y )/.( yp ), y*yp re, on I (IS)

g.( y ) • A. L( Y )L( y, ), Y'Yp reaon n (19)

where, f,(y) and f<(y) are functions belonging to regions I and II, respectively.

Assuming sinusoidal variation,

f,(y) -- CCos (yy) • DSin (yy) , Y_Ye (20)
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f,(y) . E Cos (yy) • F Sin (yy) , y<yp (21)

for C m , D m , E. and F. as complex constants. Using the Maxwell equation, which relates the curl of the

electric field vector to the magnetic fields, gives •

-j_ _ It= = _ A Cos (m n_____x)ag.(y)
..o a Oy

(22)

The boundary conditions

(23)

yield F. = 0, and

2". (y) = E Cos(vy) (24)

Letting Am' = A,_Em, and realizing from (23) that C. = Cos(yb) and D. = Sin(yb), we have •

2". (y) = Cos[V(y-b)]) (25)

Letting the Green's functions g.(y) = Gm(.Y,yp), we have, for each respective patch region'

G ( y , yp ) = A./Cos( yyv )Cos(y(y-b) ) , y>yp , region I
(26)

Gy.( y , yp ) = A'Cos ( ¥y )Cos ( y(yp-b )) , ygyp, region II (27)

Note that (26) and (27) are equal at the y = yp boundary of regions I and II.



Followingtheprocedureoutlinedin Felsonet al. 1993 to determine Am' , we have "

12

A

Cos (mxx-----e-p)

, = j_o_ol ° c(m) a
" a V Sin (vb)

(28)

Substituting (28) in (13), for the appropriate region, the single-index electric-field quantities of the microstrip

antenna are "

- jto_ ° loc(m ) m_x (m_x) (29)
E : __, Cos ("-----_P) Cos _ Cos (yyp) Cos (y(y-yr)) , Y > Yp

avSin (¥b) a a

m _x , (30)joao I o c(m) Cos (m_......_x)Cos (_.__z) Cos (VY) Cos (VCvp-b)) Y _: Yp
E:n ,..o aySin (yb) a a

The only unknown parameter that has not been dealt with so far is y = Ym, the single-index propagation

constant. It is obtained fi'om using either (26) or (27) for Gy_(y,y v) and substituting it into the homogeneous

form of (I)

02 t2 (31)[ _ _ (mlt)2 4. ] A,/Cos(yy)Cos(y(yp-b)) . 0
ay2 a

For non-vanishing cosines,

V * V= " i 1:2 - (ran)2a

(32)

where, k 2 = er( 1 - 6,ff)k2o, as defined in section 2.2.1.
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2.3.2. Input impedance

Evaluating E, from (29) or (30) at the probe coordinate (_, yp) and substituting into (8), gives

_(m) ool2(ran%) _ ('_,,vp) co6 (_,(,vp - b))

Zss = JtOPod _ a
a ,.o y,, 5in (y,, b)

(33)

where, "SS" refers to single-sum Therefore,

Z _ss = Zss , Xf (34)

where, X/is defined in equation (9).

2.4. Comparison of the single-sum and double-sum input impedance expressions

Mathematica 2.2 software was used to calculate all computer data. Sample antenna parameters chosen

were a = 2", b = 1.27 ", t = 20 mils, ¢, = 2.33, d = 62 mils, with a resonant frequency of 1.93 GHz. The

single sum input impedance for a probe position ofx = 0.892", y = b / 2" was simulated to six terms only,

and held fixed in that manner. One of the double sum terms was also held fixed at six terms, and the

remaining sum was separately computed by limiting the upper index to 5, 10, and 20 terms, respectively. This

was performed to demonstrate the congruency of the single and double sum solutions. Figures 3a-c

demonstrate this congruency on computer-generated Smith Charts. It is apparent that as the non-fixed

double sum term approaches 20, the two solutions begin to overlap. Therefore, the single sum solution can

serve as a replacement to the double sum solution, since it not only represents the double sum solution, but

it also is easier to calculate.

Table I is a computation of the execution times associated with the computer simulation of equations -

(12) and (34), for the antenna mentioned in the first paragraph of this section. The operating frequency
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chosen was 1.93 GHz. A reference to Table I shows that the double sum solutions take from 2 to 153 times

as long to execute as compared to the single sum solutions. Again, the single sum solutions are desired for

their lower computational times. A graphical display of the congruency of double and single sum solutions

is shown in figure 4a. This is further evidence that the two methods provide congruent results. The same

simulation procedure mentioned above was performed for a second antenna with _r = 10.8, a = 0.9", b =

0.6", d = .025", and a probe position ofx = 0.54", y = b / 2", at f= 2 GHz. Results are shown in figure 4b,

and are commensurate with those discussed above.

3. Experimental verification of the data

A Wiltron 360B Network Analyzer was used to test the rectangular-patch microstrip antenna for input

impedance data, with respect to the S u input port parameter. The Smith Chart frequencies were swept from

1.7 to 2.3 GHz. The test antenna was of patch dimensions a = 0.9", b= 0.6", with e, = 10.8, and substrate

thickness old = .025". The position of the probe was located at x = 0.54", y = b/2 ", relative to the bottom

le_ comer (coordinate origin) of the patch. The same antenna dimensions and dielectric constant data were

fed into the computer model to generate a Smith Chart. In the theoretical model, an operating frequency of

2 GHz was used, which was the marked frequency on the Network Analyzer.

Figures 5a and 5b are the theoretical and experimental versions, respectively. Usually, the main point of

interest on either plot is the point which intersects the real axis, i.e., the point closest to the perfect 50fl

probe-to-coax line matching point. At 2 GI-Iz, the unnormalized impedances of the input impedances at the

probe location were (47.961 +j 1.891) f] and (47. 842 +j 0.762) fl for the theoretical and experimental

data, respectively, when equation (9) was used to account for an approximation of the probe reactance.

However, when equation (9) was omitted from the theoretical model, the theoretical probe impedance was

equal to (47.961 + j 2.861), which is much better when compared to the experimental value. However, it

should be noted that neglecting the probe analysis in theoretical modelling provides reasonably accurate

values around the resonant frequency of the antenna, but it also moves the values of the theoretical input
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impedances in a capacitive direction toward the lower half of the Smith Chart when frequencies are further

away from the resonant frequency. The error associated with prediction of the imaginary part of the input

impedance can be directly attributed to the fact that an approximation was used to forecast the value of the

probe reactance. Only testing of the actual antenna provides the exact quantity. However, the use of

equation (9) allows one to predict a more accurate value of the antenna input impedance with respect to

predicting impedances over an entire given frequency span. The omission of equation (9) from the analysis

has been found to cause the Smith Chart impedance data to be shifted downward. This means that the probe

has a capacitive effect, which is not the actual case - its effect is an inductive one.

Both Smith Chart curves are quite similar, and the small difference in results can be attributed to the fact that

the theoretical model (cavity model) neglects consideration of surface waves and backlobe radiation (under

the ground plane) due to reflection caused by an input impedance mismatch. Furthermore, the theoretical

analysis views the ground plane as being infinite in transverse (to z) directions. However, good results were

still obtained, since it has been found (James and Hall 1981) that surface waves are negligible for thin-

substrate patch antennas. Since the matching is reasonably close to 50f_, reflection is minimal. Therefore,

the analysis used was adequate enough to predict the experimental results.

4. Conclusions

The single-summation approach used to obtain the input impedance was shown to drastically reduce

computational effort, when compared to similar double-summation calculations. The real value of this -

procedural economy is that the reduction in computation and cost does not sacrifice the accuracy needed

Also, it should be emphasized that the double-summation approach required at least twice as much com -

putation as that of the single-summation approach. When the double sum solutions are summed over 50

terms each, it was found that it took 153 times as long to execute as that of an equivalent single summed

term.
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Abstract

The need for high efficiency components has grown significantly due to the expanding role of fiber optic

communications for various applications. Integrated optics is in a state of metamorphosis and there are many

problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of

coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a

single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel

tapered structure presented in this paper is shown to produce perfect match for power transfer.

1. INTRODUCTION

Integrated Optics has come a long way since early 1970's. It is poised at the threshold of making a big

impact in everyday world. Integrated optics has drawn into several disciplines, such as computers and

microwave integrated circuit technology resulting in new fabrication technologies. The field is now in a state of

flux and there are still many problems awaiting solutions. One of the main problems being the lack of a simple

and efficient method of coupling optical fiber to thin-film devices for integrated optics. Although a number of

connectors are available in the market, the efficiency and reproducibility are low. In this paper, a novel uniform

and symmetrically tapered structure are analyzed mathematically and the results presented.

There are certain papers published by researchers in the area Of thin-film couplers that are worthy of note, in that

they provide the background for the development of the proposed work and point towards issues raised by

shortcomings of the previous work. Louisell [ 1] investigated broadband hi-directional couplers in which he showed

that the phase constants and coupling coefficients vary with distance along two coupled transmission lines.

Ulrich [2] has shown by analysis how light can be coupled into a thin-film by means of a prism-film coupler. Akira

Ihaya [3] presented a mathematical model of a thin-film optical directional coupler consisting of a three-layered

deposited glass films on the substrate, with coupling occurring between the first and the third film. Wilson and

Teh[4] have shown a mathematical modeling of a tapered velocity directional coupler. Nelson [5] has theoretically



examined the coupling of single-mode optical waveguides through the use of expanding and contracting tapers.

Juichi Noda et al.[6] have shown a connection between single mode fiber coupler to a Ti diffused LiNo3 strip

waveguide. The authors Y.Cai et a1.[71., have analyzed the coupling characteristics of a uniform structure.

2. THEORETICAL BACKGROUND

In this paper, we present a novel method of coupling light from a single mode fiber to two structures : Uniform

and symmetrically tapered thin-film couplers. The model presented is an improved version of the uniform five

layered structure presented by Y. Cai et al [7]. Ifa fiber is directly connected to the thin-film, as shown by Y.Cai et

al [7]., it leads to a large mismatch of the field profiles at the interface and as a result, leads to loss of optical

power. To overcome this optical reflection and radiation losses, the> proposed a five layered structure which is

shown in Figure 1. This consists of a coupling waveguide, buffer layers, thin-film layer and the substrate. To avoid

mismatch of the fiber core and the coupling waveguide field profiles at the interface, the coupling waveguide

dimensions are designed as 2aX2a, where 'a' is the radius of the fiber core. Guttmann et all8]., have shown that

the field distributions of the fundamental mode of the cylindrical fiber core and the garnet material waveguide

differ slightly if the refractive index differences are smaller. Solgel solution is used at the interface such that any

slight refractive index mismatch between the fiber core and the coupling waveguide is minimized. The buffer layer

serves the purpose of coupling optical power to the thin-film waveguide of lower refractive index. Gadolinium

Gallium Garnet material was used as the thin-film material because of the properties exhibited by the material.

The buffer layers and the coupling waveguide are silica doped materials. The required refractive index of buffer

and coupling waveguides is obtained by doping TiO: with SiO:.

The eigen mode equations of the five layered structure developed ( Figure 1 ) can be obtained by solving with

w=g=2a, where " w= the height of the coupling waveguide, a= radius of the fiber core, r_=refractive index of the

coupling waveguide ( Garnet material ), n,=refractive index of the buffer layer, nw = refractive index of the thin-

film material, g--wavelength of the wave ( 1.3pan ) and WI= height of the thin-film coupling waveguide. The

eigenmode equations developed by Y.Cai et al[9l.,are •

Qo .... <,)= n_K_ tan(K_,.W / 2)

O_=4(Zx/2)'-(n_g-nj)-K_ .... (2)

Q, K_y{-l+4tanZ(gK_')+l}= ..... (3)
tan(gK_)

Qt = %/(2g/2)2(/'t2= -nJ)-g_ ..... (4)



Theparameters1%,Qaandlqy,Qt
sinusoidalvariationin thex andy directions.

determinedbysolvingequations( 1to4),

arethex andy componentsof the wavenumbers. K_ and K_, represent the

The propagation constant of the coupling waveguide can be

..... (5)

with Wl andThe propagation constant [3w of the thin-film waveguide is obtained by' replacing rt_ with nw, w

13_ with 13w in equations( lto5 ). The value of W1 for the thin-film is so chosen such that highest power

coupling occurs between the coupling waveguide and the thin-film at this value. The optimum value W1 is chosen

such that D_ = [3w for no mismatch. The thickness of the buffer layer has a direct bearing on the power coupled

from the coupling waveguide to the thin-film waveguide and an optimum value is chosen such that there is a

maximum power transfer from the coupling waveguide to the thin-film waveguide. The propagation constant of

the thin-film varies because of the change in value of w along the z direction. Therefore the mismatch, M depends

on the propagation constant difference given by M(z) = flgg - flw (z) .... ( 6 )
2C

and the maximum fraction of power transferred between the coupling waveguide and the thin-film waveguide with

a fixed mismatch M, is given by F" = ( 1 + M2) _ ..... ( 7 )

Application of the theory developed by Snyder et al[10] and Snyder [11], to the model analyzed in Figure 1, gives

the power coupled into the thin-film for a uniform coupler as

z

P' = P F2 Sin 2 I (C / F)dz ..... ( 8 )
0

where P is the total power introduced, C the coupling coefficient between the center of the coupling waveguide

and the center of the thin-film waveguide. In this paper, we present a novel uniform and symmetrically tapered

structure ( Figure 2 ) where the modes of a uniform waveguide form a complete set and can propagate

independently from one another, while the tapered modes are coupled together and adjust their characteristics to

suit the varying transverse properties of the guiding structure as they are moving along the taper. During the

process of coupling the light from the uniform coupling waveguide to the thin-film waveguide, the wave is kept in

the lowest order mode. For the shape shown in this paper,( Winn and Hams [12]),the power coupled at the

narrow end is given by Po = P' ( 1- F2 Sin 2 i (C / F)dz ) ..... ( 9 )
0

In this paper while analyzing the theoretical model of the uniform and tapered coupler we made the assumption

that the materials used are lossless and therefore there are no Fresnel's reflections at the interfaces and that there

are no lossess at the interface of the fiber core and the coupling waveguide.



3. RESULTS AND DISCUSSION

The material used for the analysis of uniform and tapered couplers is Gadolinium Gallium Garnet (GGG). The

coupling waveguide material used is GGG Buffer layer material is spun silica which is doped with TiO2. Thin-

film material is polymerized solgel solution of SiO: and TiO2. The refractive index of coupling waveguide, n_ =

1.9389 @ _, = 1.3_tm. The refractive index of the buffer layers is chosen, as na = 1.9340 and the refractive index

of the thin-film material, nw = 1.9450. Figure 3 shows the plot of C versus d, where C is the coupling coefficient

and d is the distance from the center of the coupling waveguide to the center of the thin-film This equation given

by Snyder [11], is

('VA_ '/2 d [-Vd 2 ]

c= .... (,o
The refractive index of GGG versus wavelength is shown in Figure 4. The expression used to calculate the

__arefractive index is n 2 - 1 = _ ..... ( 11 )
2

i=l

where AL and Li are the sellmeier coefficients,given by Wood and Nassau !131.

By solving the equations (Ira5) with w=2a=g, the propagation constant _ = 9.3253804 p.m" was obtained.

Figure 5 shows the propagation constant for the thin-film as a function of the film thickness Wl. The propagation

constant of the thin-film equals the propagation constant of the coupling waveguide when the thickness

Wl=0.886_m The maximum coupling power is attained at _g = [3w = 9.3253804 _un" . Figure 6 shows the

plot of coupled power versus the propagation distance for the uniform coupler of different d's for perfectly

matching constants [3ss = _w at thickness of thin-film w--0.886 psn. Figure 7 shows the power coupled for

uniform and tapered couplers with respect to the distance z and the taper starts at length Ll= 700gin, with

slopes (K) of the symmetrical taper at 0.0001, 0.00009 and 0.00002. Figure 8 shows the effect of the thickness of

the thin-film and the role played by the taper in the power output.

4. CONCLUSION

The novel structure (Figure 2) exhibits broad-bandwidth coupling characteristics and it is easy to manufacture

since it does not put serious constraints on the accuracy of the coupling length of the coupler. The taper has the

distinctive advantage of confining the power within the taper such that the output stays approximately near the

value of the power introduced at the start of the taper. The outstanding feature of the taper is the higher efficiency

as compared to the more conventional devices.
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